

Instituto de Investigaciones de la Amazonía Peruana Programa Manejo Integral del Bosque y Servicios Ambientales

Evaluación y Selección de Colecciones Básicas del Germoplasma de Camu- camu

Floracion, fructificación y evaluación en colección "Cinco Cuencas" EEASM-2010

Centro Experimental San Miguel- IIAP

Artículo Científico

Evaluación y mantenimiento de germoplasma de camu-camu colectado en poblaciones naturales ¹

Resumen

Se cuenta a la fecha (Diciembre 2010) con 463 muestras con un total de 15,945.5 plantas en evaluación, las mismas que fueron colectadas entre los años 2001-2010, que son: 5 cuencas (115 familias), Putumayo (25), Nanay (1), Tigre (32), Curaray-Tahuayo (61), Yavari (23) y Mazan (23). En cuanto a contenido de vitamina C se evaluaron 218 plantas que presentaron valores entre 693.0 mg y 2951 mg

Se ha continuado con la evaluación de germoplasma básico y pruebas genéticas: evaluación de 3 grupos de germoplasma básico (5 cuencas, putumayo, nanay, cuararay- tahuayo, tigre), evaluación de 2 pruebas genéticas o comparativos de progenies (37 clones y 108 progenies). Asimismo, en el presente se ha complementado la selección de individuos superiores mediante el software de selección genética SELEGEN (REML- BLUP).

Se han identificado 59 plantas promisorias y 8 plantas seleccionadas por su rendimiento destacado durante tres años consecutivos en tres colecciones básicas (5 cuencas, putumayo y nanay) y dos pruebas genéticas, las mismas que constituyen una base apropiada para una primera etapa de selección planteada en el Plan de Mejoramiento Genético del Camu-camu - PMGC)

Respecto a este parámetro, De las 15 plantas que en el presente año ocuparon los primeros lugares sólo una pertenece al ranking del año pasado. En cuanto al rendimiento de fruta fresca (a los 8 años de la plantación), ocuparon los primeros 15 lugares las plantas: Ct0818 con 21.225,00 g/pl. Ct0911 con 14.156,90 g/pl. NN0323 con 14.119.00 g/pl. TH0319 con 13.989,00 g/pl. Ct0316 con 11.096,00 g/pl. CC0511 con 10.593,30 g/pl. Ct0223 con 1°.429,00 g/pl. NY0707 con 10.368,00 g/pl. PC0504 con 9.801,00 g/pl. PC0129 con 9.630,71 g/pl. NN0202 con 9.227,93 g/pl. Ct0321 con 8.568,00 g/pl. y TH0926 con 8.341,00 g/pl.

1. Introducción

En el presente año se volvió a colectar, visitando por primera vez poblaciones naturales como del rio Yavari y Mazan. De modo que, la actividad de colección de germoplasma de camu-camu en poblaciones naturales de camu-camu, que fue iniciada en el IIAP en el año 2001, se ha fortalecido con nuevas colecciones asi como la continuación de la caracterización y evaluación del material genético, en el marco de un Plan de Mejoramiento Genético del Camu-camu.

La amplia base de genes acopiada, que involucra las cuencas de los ríos Ucayali, Putumayo, Curaray, Napo, Tigre, Tahuayo, Itaya, Nanay, representa una reserva valiosa para conseguir atributos favorables para la sostenibilidad en el aprovechamiento de la especie. Entre estos atributos figuran como principales: el nivel de vitamina C, precocidad, estacionalidad atípica, tamaño grande de fruto, así como alto y estable rendimiento.

En el banco de germoplasma del Centro Experimental San Miguel (CESM), se cuenta con 6 parcelas ocupadas con colecciones basicas o pruebas genéticas a saber: Morona-Nanay (Parcela 6), Putumayo (Parcela 6), Cinco cuencas (Parcela 6), Comparativo de clones (Parcela 6), Curaray-Tahuayo (Parcela 10) y Tigre (Parcela 10). Las dos últimas parcelas fueron instaladas en campo definitivo el año 2007. El material correspondiente a "cinco cuencas" está siendo analizado a nivel de ADN en los estudios de caracterización molecular que desarrolla el IIAP desde hace tres años. El material recientemente colectado se encuentra aun en etapa de vivero.

2. Objetivo

Caracterizar y evaluar material genético de camu-camu colectado en Loreto y existente en el Centro Experimental San Miguel (CESM-IIAP), con el fin de identificar consistentemente genotipos superiores que sirvan de base para el desarrollo del programa de mejoramiento y la producción de semilla mejorada.

¹ Evaluación de germoplasma y pruebas genéticas de material promisorio al 8vo año del establecimiento, Mario Pinedo Panduro.

3. Antecedentes

En el Departamento de Loreto existe una amplia distribución de poblaciones naturales de Myrciaria dubia (camu-camu arbustivo) se la encontró en las cuencas de los ríos Nanay, Napo, Ucayali, Marañon, Tigre, Tapíche, Yarapa, Tahuayo, Pintuyacu, Itaya, Ampiyacu, Maniti, Oroza, Putumayo, Yavari y Curaray. Mientras que hacia la zona sur de la amazonia peruana, incluyendo gran parte del departamento de Ucayali, se concentran poblaciones de *Myrciaria floribunda* (camu-camu arbóreo)

Ha sido observada una amplia variabilidad fenotípica en las extensas y dispersas áreas de poblaciones naturales, expresada por diferentes rasgos tales como color y forma de las hojas, tamaño de fruto, grosor de la cáscara, numero de semillas, contenido de ácido ascórbico, precocidad, etc., que constituyen una importante fuente de variabilidad para iniciar un programa de mejoramiento.

El INIA, tanto en Iquitos como en Pucallpa, ha realizado evaluaciones de material genético, llegando a identificar plantas de alto rendimiento y efectuar su clonación mediante injertación.

En la sede de Pucallpa, se trabajó con material procedente de los ríos Nanay, y lagos de Morona y Supay, zona nor-oriental del País (Departamento de Loreto). El material fue evaluado en suelos inundables durante 8 años, con 5 cosechas (1991 a 1995); lo que permitió discriminar plantas precoces, llamadas así a las que iniciaron fructificación a los 3 años del trasplante a campo definitivo.

El INIA-Iquitos, entre 1986 a 1988 colectó 39 poblaciones, procedentes de las grandes cuencas de los ríos Ucayali, Amazonas, Marañón y Napo, de las cuales se presentan 20 en el Cuadro 1, las mismas que vienen siendo evaluadas durante 15 años. Esta evaluación permitió observar 10 plantas sobresalientes por rendimiento de fruta, en suelo inundable de agua oscura (isla de Muyuy) y 10 en suelos de tierra firme con rendimientos proyectados entre 6 y 25 tn/ha a los 11 años de edad de la plantación. El rendimiento de las plantas variaron notablemente entre el piso inundable y tierra firme. De modo que en suelos inundables, destacaron los ecotipos: 15-03-08, 15-03-10, 15-01-07, 15-03-09, 15-01-06, 15-03-06, 15-03-07, 15-03-05 y 15-02-09, con rendimientos entre 12.6 y 25.6 tn/ha de fruta a los 11 años de edad.

Entre 1997 y 1998, el IIAP, Ministerio de Agricultura, y otras entidades, establecieron un total de 5000 ha de plantaciones con plantas francas,. Aunque la mayor parte de estas plantaciones han sido descuidadas y abandonadas, implica una mayor base genética en proceso de domesticación y una evaluación del germoplasma por el agricultor, quien también esta seleccionando plantas superiores y mejorando sus cosechas sobre la base de una propagación selectiva de las plantas que maneja.

El IIAP en convenio con el INIA-Iquitos, efectuaron durante el año 2001 una colección de germoplasma en cinco cuencas principales a saber: Itaya, Napo, Tigre, Curaray y Putumayo (Cuadro en la sección Anexos), cuya evaluación en su quinto años después del establecimiento, se presenta en el presente informe.

4. Metodología

4.1. Materiales

Wincha, machete, libreta de campo, bolsa polietileno, plancha de aluminio, marcadores, cooler, cámara digital, refractómetro, potenciómetro, congeladora (-21 C°), balanza analítica, equipo de cromatografía HPLC, picetas, tubos de ensayo (14 ml), vaso de precipitado, guantes, metanol, acido ascórbico, Hipoclorito de Sodio, alcohol de 70° y 96°, agua destilada, tijeras, mandil, toallitas, papel secante, detergente, computadora, útiles de oficina. El banco de germoplasma esta en campo definitivo, conformado por 115 introducciones o familias procedentes de cinco cuencas (Itaya, Tigre, Napo, Curaray y Putumayo), con un total que al inicio fue de 3000 plantones distribuidos en la forma aleatoria y con un distanciamiento de 1.5 X 1.0 m. según el diseño completamente aleatorizado con un promedio de 25 repeticiones o plantas por introducción. La colección Putumayo cuenta con 25 muestras. La colección del río Nanay, con una muestra en estado de fructificación

4.2. Etapas del trabajo

Básicamente, se colecta, se evalua, se selecciona, se valida y se distribuye. El presente estudio incorporo actividades de campo, laboratorio y gabinete. En el campo se realiza colecciones tanto de rodales naturales como de plantaciones de productores.

a) <u>Etapa de campo</u>: Se realizará la selección de plantas de acuerdo a los descriptores establecidos por el Plan de mejoramiento del Camu-camu. Las colecciones de muestra de frutos serán envuelto en bolsa

plástica debidamente codificada inmediatamente guardadas en un caja térmica con una adecuada temperatura, para su posterior análisis en el Laboratorio.

- b) <u>Etapa de Laboratorio</u>: Consistirá en evaluar los parámetros químicos (Grados Brix, ph, Vitamina C), de las muestras colectadas para eso se guardara en un congelador (-21º) para su debida conservación.
- c) <u>Etapa de Gabinete</u>: En esta etapa se realizará el procesamiento de datos de campo y laboratorio, se utilizara el paquete estadísticos SPSS vs 15, con sus respectivos gráficos.

4.1. Ubicación del Campo Experimental

El presente trabajo de investigación se lleva a cabo en el Centro Experimental "San Miguel" – IIAP (Iquitos), ubicado en la margen izquierda del río Amazonas, aguas arriba de la desembocadura del río Itaya, entre las coordenadas 3° 40´ y 3° 45´ de latitud Sur y 73° 10´ Y 73°11´ de longitud Oeste, a 25 minutos de navegación aguas arriba de la cuidad de Iquitos. Se trata de una zona de restinga alta, de clima cálido húmedo, la temperatura promedio es de 26 °C y la precipitación pluvial anual es de 2911,7 mm/año.

4.3. Variables en estudio

En la evaluación de la colección 5 cuencas se consideraron las siguientes variables: Número de ramas / pl, Diámetro de copa, pl, Altura de la planta, Número de flores / pl, Número de frutos / pl, Peso de frutos / pl, Color de pulpa, pH en pulpa/pl, Grados Brix en pulpa/pl, Acido ascórbico en pulpa, Peso de cáscara/pl, Número de semilla / fruto, Peso de pulpa / fruto, Rendimiento en kg / pl. Con este ultimo atributo se han detectado plantas con posibilidades de precocidad.

En cuanto a las colecciones del río Putumayo y Nanay, se evaluaron: sobrevivencia y altura de planta, como apreciación global del crecimiento y desarrollo de las plantas.

El comparativo de 37 clones fue instalado en diciembre del 2004 bajo diseño de bloque completo aleatorizado, con cuatro repeticiones y se evaluaron: Altura de planta, diámetro de planta, numero de ramas basales, numero de ramillas o puntas, numero de flores y numero de frutos (ver informe específico de dicho experimento con la tercera evaluación anual consecutiva).

En el comparativo de 108 progenies se ha evaluado altura de planta, diámetro basal, numero de ramas basales y numero de ramillas o puntas. Estos mismos parámetros serán aplicados en las colecciones Tigre y Tahuayo-Curaray.

4.4. Tamizado de selección

En el presente año (2009), se inicio la segunda etapa del tamizado del material de la colección "5 cuencas". Con ese fin se marcaron plantas que mostraban un desarrollo intermedio fueron marcadas para ser trasplantadas a una parcela comercial del CESM manteniendo su identidad Las restantes que quedaron en el campo son plantas aparentemente de mayor rendimiento que se dividen en dos grupos: a) Evaluadas en el 2009, que son en numero de 441 b) No fueron evaluadas en el 2007 porque no mostraron fructificación, pero tienen arquitectura favorable y serán evaluadas próximamente. En resumen, el tamizado dio lugar a los siguientes cinco grupos de plantas.

- a. Plantas seleccionadas. Plantas que destacan por precocidad y arquitectura
- b. Plantas muertas. Plantas que no existen, después de 5 años de la plantación
- c. Plantas eliminadas. Fueron eliminadas por presentar escaso desarrollo
- d. Plantas trasplantadas. Fueron podadas para continuar su evaluación en otra área
- e. Plantas por evaluar. Plantas que presentan buena arquitectura y que aun no fueron evaluadas

4.6. Diseño estadístico

En el presente trabajo de investigación se efectuaran análisis de datos mediante cálculos estadísticos descriptivos (promedios, rangos, varianza, coeficiente de variación). Para el análisis de varianza de algunos descriptores se aplicara el Diseño Experimental Completamente Aleatorizado;. Se efectuará también análisis de regresión y correlación entre variables, mediante el programa estadístico SPSS 15.0

En el análisis de varianza se utilizara el Modelo Lineal Aditivo:

Yi j= μ + tj + ϵij

Donde: Yi j = variable respuesta correspondiente al i-esimo tratamiento y ala j-esima repetición

M = media general

tj = efecto del i-ésimo tratamiento

εij = error experimental

Tratamientos: Cuencas: T_{1:} Itaya; T_{2:} Napo; T_{3:} Tigre; T_{4:} Curaray; T_{5:} Putumayo.

Tratamientos :Cochas: $T_{1:}$ Unión; $T_{2:}$ Tipishca; $T_{3:}$ Pelejo; $T_{4:}$ Nuñez; $T_{5:}$: Yuracyacu; $T_{6:}$ Tipishca $T_{7:}$ Pava ; $T_{8:}$ Guacamayo; $T_{9:}$ CHavarrera; $T_{10:}$ Tipishca; $T_{11:}$ Urco; $T_{12:}$ Tostado; $T_{13:}$ Cedro;

5. Resultados

Los resultados son presentados en el siguiente orden:

- 5.1. Información general
- 5.2. Colección 5 cuencas
- 5.3. Colección Putumayo
- 5.4. Colección Nanay
- 5.5. Colección Tigre (INCAGRO)
- 5.6. Colección Tahuayo- Curaray (CONCYTEC)
- 5.7. Comparativo de 37 clones
- 5.8. Comparativo de 108 progenies precoses

5.1. Información General

Durante el año 2009 se ha continuado con la evaluación de material colectado en años anteriores, el estado actual de las colecciones se muestra en el siguiente Cuadro.

Cuadro1:

Procedencia	Avance	No. Muestras Inicial	No. Plantas Inicial	No. Plantas Actual	Fuente Financiera	Año colección	Estado al 2010
Cinco cuencas	Colección básica	115	3000	2050	PROBOSQUE- IIAP	2001	Fruct
Nanay	Colección básica	1	126	82	PROBOSQUE- IIAP	2003	Fruct.
Putumayo	Colección básica	25	720	484	INCAGRO	2004	Fruct
Rodales y chacras	Comp. clones	37	148	148	PROBOSQUE- IIAP	2005	Fruct.
Tigre	Colección básica	32	1080	929	INCAGRO	2005	Veget. Florac.
Cuararay Tahuayo	Colección básica	61	1080	934	CONCYTEC	2006	Veget. Florac
CESM	Comparativo Progenies precoces	108	1296	1177	PROBOSQUE- IIAP	2006	Veget Florac
Agricultores de Loreto y Ucayali	Colección plantas promisorias	31	10300	7725	FRUTAM- IIAP	2009	Vivero
Yavari	Colección básica	23	1254	940.5	FRUTAM-IIAP	2010	Vivero
Napo	Colección básica	7	230	172.5	FRUTAM-IIAP	2010	Vivero
Mazan	Colección básica	23	1738	1303.5	FRUTAM- IIAP	2010	Vivero
Totales		463	20972	15945.5			

En el Cuadro 1, se cuenta a la fecha (Diciembre 2010) con 463 muestras con un total de 15,945.5 plantas en evaluación. La reducción gradual en el tiempo de plantas, dentro de las colecciones o muestras se explica principalmente por plagas y accidentes durante el mantenimiento. Parte de las muestras fueron trasladadas a parcelas comerciales dentro del CESM, dado la necesidad de raleo por la competencia entre plantas al reducirse el espacio entre ellas.

5.2. Colección cinco cuencas

5.2.1. Apreciación de la calidad de plantas por cuencas y cochas durante los periodos 2008- 2010

En el Cuadro 2 (graficado en la Figura 2), destacan las cuencas Curaray, Napo y Putumayo por la cantidad relativa de plantas promisorias en relación a las colectadas en cada cuenca. El 4,02% de las plantas colectadas en el río Putumayo, el 4,80% colectadas en el rió Napo y el 7,04 % de las colectadas en el río Curaray, fueron seleccionadas como promisorias a juzgar por su precocidad, productividad y peso de frutos por planta. En un análisis paralelo en cuanto a las cochas, para el presente periodo 2010 destacan las del río Napo la cocha Yuracyacu (3,29%), tostado y Chevarrea del río Curaray con (2,82 y 2,70%) ver (Figura 2)

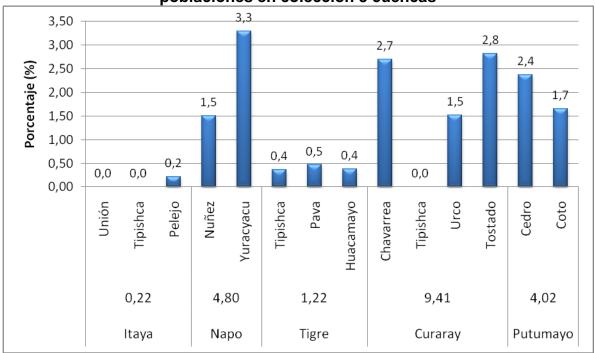
Cuadro 2. Número y porcentaje de plantas selectas, calificadas como promisorias por precocidad y numero de frutos/planta en relación a las muestras colectadas por IIAP/INIA en el año 2001

C	Cuenca		Cocha	Nº Muestras (introducc iones)	Nº plantones instalados	Nº plantas Selecciona das 2008	Nº plantas Selecciona das 2009	Nº plantas Selecciona das 2010	Total 2008	Total 2009	Total 2010
		1	Unión	4	35	0 (0%)	0(0%)	0(0%)			
		2	Tipishca	4	21	0(0%)	0(0%)	0(0%)	0 (0%)	2(0,86%)	1(0,22%)
1	Itaya	3	Pelejo	8	457	0(0%)	2(0,86%)	1(0,22%)			
		1	Nuñez	10	265	6(2,26%)	4(1,72%)	4(1,51%)	14(2,75%)	10(4,30%)	10(4,80%)
2	Napo	2	Yuracyacu	10	243	8(3.39%)	6(2,58%)	8(3,29%)	14(2,7070)	10(4,5070)	10(4,0070)
		1	Tipishca	10	271	2(0,74%)	1(0,43%)	1(0,37%)			
		2	Pava	10	214	2(0,93%)	2(0,86%)	1(0,47%)	6(0,8%)	7(3,01%)	3(1,21%)
3	Tigre	3	Ниасатауо	10	266	2(0,75%)	4(1,72%)	1(0,38%)			
		1	Chavarrea	7	189	1(0,53%)	6(2,58%)	6(2,70%)			
		2	Tipishca	3	74	1(1,35%)	2(0,86%)	0(0,00%)	11(1, 4 2%)	15(6,45%)	13(7,04%)
		3	Urco	10	264	0(0%)	4(1,72%)	4(1,52%)	11(1,4270)	10(0,4070)	10(1,0470)
4	Curaray	4	Tostado	10	248	9(3,63%)	3(1,29%)	7(2,82%)			
		1	Cedro	9	211	11(5,21%)	7(3,01%)	5(2,37%)	19(4,19%)	9(3,87%)	9(4,02%)
5	Putumayo	2	Coto	10	242	8(3,32%)	2(0,86%)	4(1,65%)	13(4,1370)	3(3,07 /0)	3(4,02 70)
Total			14	115	3000	50(1,66%)	43(1,43%)	38(1,27%)	50(1,66%)	43(1,43%)	38(1,27%)

Cuadro 3. Análisis de Varianza entre cuencas para 10 descriptores en colección 5 cuencas, año 2010

Variable	F.V.	SC	gl	СМ	F	p-valor	CV	SIG.
á.a	Cuenca	2361,23	4	590,31	0,01	0,9999	21,4	NS
a.a	Error	4623308,9	64	72239,2	0,01	0,3333	21,4	140
	Total	4625670,12	68	72255,2				
Nº frutos	Cuenca	650357,42	4	162589,36	1,14	0,3368	134,69	NS
14 Hatos	Error	27554071,9	194	142031,3	1,14	0,0000	104,00	140
	Total	28204429,4	198	142001,0				
Rendimiento	Cuenca	37697497,7	4	9424374,42	0,97	0,4231	128,43	NS
	Error	2432148517	251	9689834,73		-, -	-, -	
	Total	2469846015	255	,				
%Pulpa	Cuenca	962,99	4	240,75	4,26	0,0027	16,64	*S
·	Error	8426,61	149	56,55	,	,	,	
	Total	9389,6	153					
%Cascara	Cuenca	202,2	4	50,55	2,14	0,0784	16,38	NS
	Error	3516,39	149	23,6				
	Total	3718,58	153					
%Semilla	Cuenca	434,19	4	108,55	5,04	0,0008	18,46	**AS
	Error	3211,48	149	21,55				
	Total	3645,67	153					
Nº Semillas	Cuenca	1005,6	4	251,4	3,59	0,0081	16,79	*S
en 20 frutos	Error	9876,37	141	70,05				
	Total	10881,97	145					
⁰Brix	Cuenca	4,55	3	1,52	2,72	0,0584	11,5	NS
	Error	20,64	37	0,56				
	Total	25,19	40					
Nº promedio	Cuenca	1,14	4	0,28	2,35	0,0559	13,81	NS
de Semilla por fruto	Error	20,06	166	0,12				
P 01 11 010	Total	21,19	170					
Peso fruto	Cuenca	80,91	4	20,23	6,05	0,0001	20,63	**AS
	Error	528,54	158	3,35				
	Total	609,45	162					

De acuerdo al análisis de varianza (Cuadro 3) la diferencia entre cuenca fue altamente significativa (AS) para % de semilla ypara "peso promedio de fruto" Coincidiendo con lo logrado en el 2008 y 2009; fue significativo (S) para los parámetros "porcentaje de pulpa" y "Número de semillas en 20 frutos". No fue significativa para los demás parámetros productivos evaluados.


Cuadro 4. Prueba de medias de tukey para 4 parámetros de evaluación en colección 5 cuencas, año 2010

%	Pulpa		%S	emilla		Nº Semilla	s/20 frutos	s/pl	Peso prom	nedio de fr	uto
Test:Dunca	st:Duncan Alfa=0,05 Test:Duncan Alfa=0,05			5	Test:Dunca	n Alfa=0,05	5	Test:Duncan Alfa=0,05			
Error: 56,55	544 gl: 149		Error: 21,5536 gl: 149			Error: 70,0452 gl: 141			Error: 3,3452 gl: 158		
Cuenca	Medias		Cuenca Medias (Cuenca	Medias		Cuenca	Medias		
Curaray	48,11	а	Itaya	28,58	а	Itaya	52,35	а	Putumayo	10,06	а
Putumayo	45,84	a b	Tigre	26,94	a b	Curaray	51,64	а	Tigre	9,46	а
Napo	45,17	a b	Napo	25,02	b	Tigre	51,15	a b	Curaray	8,86	a b
Itaya	42,62	a b	Curaray 23,57 b		b	Putumayo	48,73	a b	Napo	7,98	a b
Tigre	41,98	b	Putumayo 23,56			Napo	45,39	b	Itaya	7,9	b

Letras distintas indican diferencias significativas(p<= 0,05)

En el presente recuadro 4, se muestran las medias entre cuencas de los parámetros evaluativos del % de pulpa, % de semillas, Número de semillas en 20 frutos y el peso promedio de fruto; donde se evidencia superioridad de las cuencas del Curaray y putumayo para el % de pulpa/planta con 48.11% y 45,84%; a demás se destaca la cuenca del putumayo con respecto al peso promedio de fruto con 10,06 reafirmando su superioridad en este parámetro en durante cuatro (4) años consecutivos.

Figura 2. Porcentaje de plantas seleccionadas como promisorias por cuencas y poblaciones en colección 5 cuencas

En la figura 2. Se detallan los porcentajes de plantas seleccionadas como promisorias en la colección de 5 cuencas, donde sobresalen las cuencas del napo con la población Yuracyacu, Curaray con la población Chavarrea y tostado, la cuenca del Putumayo destacan la cocha cedro y coto.

Cuadro 5. Análisis de Varianza Inter cochas para 10 descriptores en colección 5 cuencas, año 2010

Variable	F.V.	SC	gl	CM	F	p-valor	C.V.	Sig.
á.a	Población	371639,83	10	37163,98	0,51	0,8785	21,57	NS
	Error	4254030,29	58	73345,35				
	Total	4625670,12	68					
N⁰ frutos	Población	3089347,75	12	257445,65	1,91	0,0359	131,33	*S
	Error	25115081,6	186	135027,32				
	Total	28204429,4	198					
Rendimiento	Población	195999670	12	16333305,8	1,75	0,0582	126,21	NS
	Error	2273846345	243	9357392,36				
	Total	2469846015	255					
%Pulpa	Población	1142,72	12	95,23	1,63	0,0901	16,92	NS
	Error	8246,88	141	58,49				
	Total	9389,6	153					
%Cascara	Población	354,96	12	29,58	1,24	0,2618	16,47	NS
	Error	3363,63	141	23,86				
	Total	3718,58	153					
%Semilla	Población	589,31	12	49,11	2,27	0,0117	18,51	*S
	Error	3056,37	141	21,68				
	Total	3645,67	153					
Nº Semillas	Población	1559,96	12	130	1,85	0,0457	16,8	*S
de 20 frutos/pl	Error	9322,01	133	70,09				
irates/pr	Total	10881,97	145					
⁰Brix	Población	7,16	9	0,8	1,37	0,2447	11,75	NS
	Error	18,03	31	0,58				
	Total	25,19	40					
Nº promedio	Población	2,06	12	0,17	1,41	0,1644	13,83	NS
de Semilla/fruto	Error	19,14	158	0,12				
Scrima/II dto	Total	21,19	170					
Peso fruto	Población	114,3	12	9,53	2,89	0,0013	20,49	**AS
	Error	495,15	150	3,3	•			
	Total	609,45	162					

De acuerdo al análisis de varianza (Cuadro 5) la diferencia entre Cochas fue altamente significativa (AS) para "peso promedio de fruto"; la diferencia fueron significativas (S) para los parámetros "Número de frutos", "Porcentaje de semillas" y "nº de semillas en 20 frutos/pl" . No fue significativa para los demás parámetros productivos evaluados.

Cuadro 6. Prueba de medias de tukey para 4 parámetros de evaluación en colección 5 cuencas, año 2010

Nº frutos			%Semilla			Nº Semillas/	20 frutos	/pl	Peso fruto		
Test:Duncan	Alfa=0,0	5	Test:Duncan	Alfa=0,0	5	Test:Duncan	Alfa=0,0	5	Test:Duncan	Alfa=0,0	5
Error: 13502	7,32 gl: 1	86	Error: 21,676	64 gl: 141	-	Error: 70,090	03 gl: 133		Error: 3,3010 gl: 150		
Población	Medias		Población	ción Medias		Población	Medias		Población Medias		
tostado	475,83	а	Pelejo	28,87	а	coto	54,00	а	coto	10,69	а
Chevarrea	420,29	ab	Huacamayo	27,04	ab	Chevarrea	53,30	ab	Huacamayo	9,74	ab
Unión	396,00	ab	Ttipishca	26,82	ab	Urco	52,67	ab	Cedro	9,60	abc
Yuracyacu	356,83	ab	Pava	26,30	abc	Pelejo	52,54	ab	tostado	9,37	abc
coto	339,25	ab	Núñez	25,90	abc	Pava	51,50	abc	Unión	9,34	abc
Núñez	266,86	ab	Unión	25,67	abc	Ttipishca	51,14	abc	Ttipishca	8,93	abc
Huacamayo	261,29	ab	Chevarrea	25,46	abc	Huacamayo	51,13	abc	Urco	8,82	abc
Tipishca	224,00	ab	Cedro	24,82	abc	Tipishca	50,50	abc	Pava	8,70	abc
Pelejo	163,31	ab	Yuracyacu	24,36	abc	tostado	50,30	abc	Núñez	8,33	bc
Ttipishca	153,77	ab	Urco	24,30	abc	Unión	50,00	abc	Chevarrea	8,07	bc
Cedro	134,67	ab	tostado	22,22	bc	Núñez	47,25	abc	Pelejo	7,80	bc
Urco	103,48	ab	coto	22,11	bc	Yuracyacu	43,82	bc	Yuracyacu	7,68	bc
Pava	79,00	b	Tipishca	20,97	С	Cedro	42,40	С	Tipishca	7,61	С

Letras distintas indican diferencias significativas(p<= 0,05)

En el recuadro 6, se muestran las medias de las variables con significancias estadísticas, donde para el número de frutos promedio, se destacan las poblaciones de tostado y chevarrea del río Curaray, seguidos de la población unión del río Itaya; para el peso promedio de fruto se evidencia que la población coto del río Putumayo presenta el mayor valor con 10,69 g y seguidos de la población Huacamayo del río Tigre y Cedro cocha del río Putumayo con 9,74 y 9,60 g respectivamente.

Análisis dinámico, luego de 8 años de la Instalación

Este año se presentan datos acumulados de 8 años respecto al crecimiento vegetativo de la colección 5 Cuencas. La altura promedio de planta no tuvo un incremento significativo con respecto al año 2009, esto debido a que se ha iniciado la segunda etapa del raleo genético, discriminando las plantas que no se acercaban al ideotipo de arquitectura de planta tomada en cuenta para la selección de individuos, teniéndose en campo plantas similar porte. (Fig. 3)

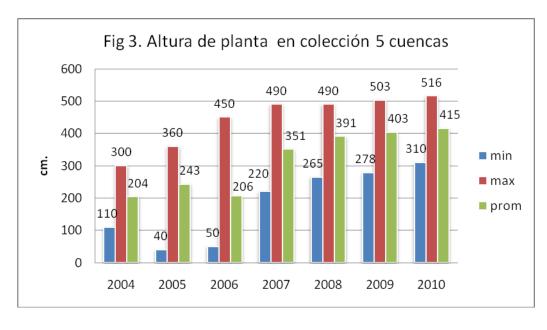
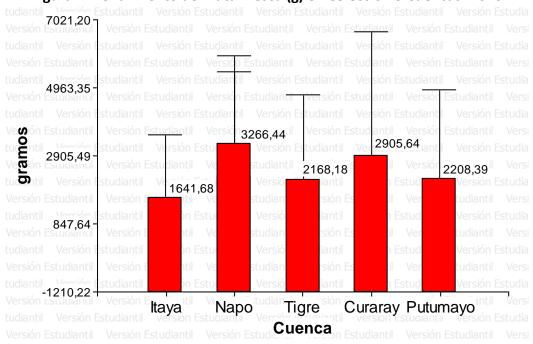
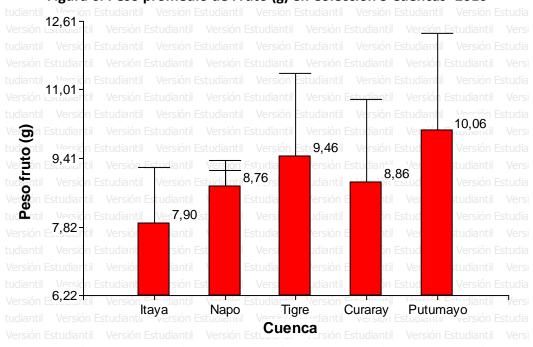



Figura 4. Rendimiento de Fruta Fresca (g) en Colección 5 Cuencas-2010



En la figura 4; se muestra que destaca al igual que en años anteriores para el rendimiento de fruta fresca las cuencas de río Napo, Curaray y Putumayo; Esto explica la superioridad en cantidad de plantas Selectas de las cuencas en mención.

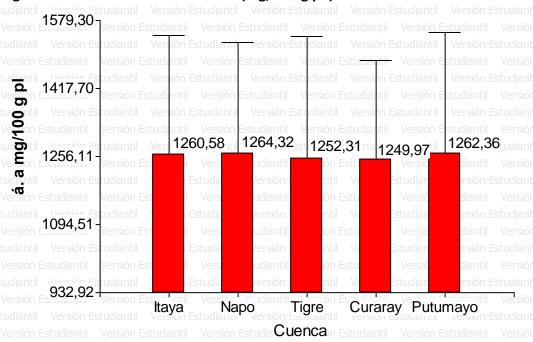

Figura 5. Evaluación de fructificación en colecció "5 cuencas"

Figura 6. Peso promedio de Fruto (g) en Colección 5 Cuencas-2010

En la figura 6, se contrasta los pesos promedios de fruto entre cuencas, la superioridad del tamaño de fruto de la cuenca del río putumayo es nuevamente confirmada, similar comportamiento se evidencia en la cuenca del tigre en años anteriores registra el segundo mejor promedio.

Figura 7. Niveles de ácido ascórbico (mg/100 g pl.) en Colección 5 Cuencas- 2010

En la Figura 7; se puede apreciar que la cuenca del río Napo presenta el mayor valor con 1264.32, superando en el promedio a la cuenca del río Putumayo que durante 3 años consecutivos presentó los mayores valores medios; no obstante la dispersión observada (bigotes), expresa la gran variabilidad de valores por planta dentro de cada cuenca.

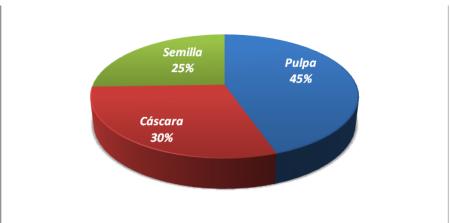
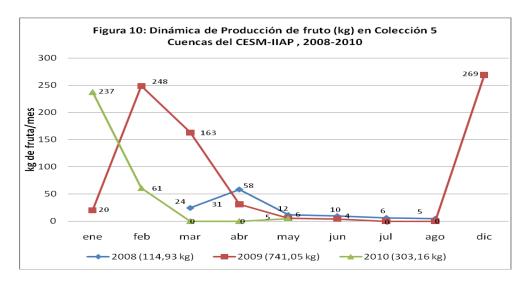



Figura 8. Componentes porcentuales de fruta en evlauacion 2010

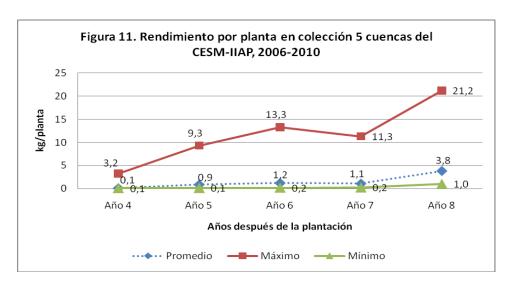

En la Figura 8, se observa los promedios totales de % de pulpa, semilla y cáscara de 256 plantas evaluadas, destacando el porcentaje de pulpa, con un valor promedio de 45.00%. En cuanto a los promedios de % de pulpa de plantas de camu-camu de las cochas destacan: Urco (Curaray) con un 48,91 %, coto (Putumayo) con un 48,38%, Tipishca (Curaray) con un 48,36%, tostado (Curaray) con un 47,94% y Chavarrea (Curaray) con un 46,80% y con un promedio bajo la cocha Huacamayo (Tigre) con 41.48 % de pulpa.

Figura 9. Abundante fructificación en planta selecta de colección "5 cuencas"

La figura 10, Se registran los volúmenes de cosecha mensuales por parcela durante los años 2008, 2009 y 2010, encontrándose que los picos de cosecha ocurrieron entre diciembre a marzo, como se puede apreciar, en el año 2010, la cosecha fue mínima con un máximo de producción atípico y de bajo volumen en el mes de Abril, coincidente con un nivel de inundación excepcionalmente bajo y un verano muy prolongado.

En la figura 11, se registran los valores promedios, máximos y mínimos del rendimiento de fruta (kg) de la colección de 5 cuencas, donde se evidencia que se ha alcanzado al octavo año un rendimiento máximo de 21,2 kg/planta, en restinga alta (piso 3), los valores promedios de la colección se muestran cercanos a los valores mínimos anuales; se pretende con la identificación y selección de individuos promisorios con altos rendimientos anuales y estables (1%, Figura 1) estaremos incrementando la media anual en periodos mas cortos a partir de la propagación de los mejores individuos que procedan de las pruebas genéticas correspondientes.

Cuadro 7. Ranking 2010 para colección de 5 cuencas para el rendimiento, peso de fruto y ácido ascórbico

u <u>uuro 7.</u>	ranking 20	TO Para oblection	11 40 0 0	derious pai	a ci icilalificii	io, pos	o de nate	dolad ascorb
ОМ	CODIGO	Rendimiento (g/planta.)	ОМ	CODIGO	Peso fruto (g)	ОМ	CODIGO	Ácido Ascórbico
1	Ct0818	21.225,48	1	TT0725	15,7	1	PC0302	2.543,35
2	Ct0911	14.156,90	2	Ct0223	13,1	2	NY0413	2.259,89
3	NN0323	14.119,17	3	PC0129	12,8	3	PC0430	2.249,00
4	TH0319	13.989,49	4	Pc0504	12,2	4	PC0120	2.201,00
5	Ct0316	11.096,00	5	TH0215	11,4	5	PC0214	2.200,00
6	CC0511	10.593,30	6	TH0926	10,1	6	TH0824	2.152,00
7	Ct0223	10.429,00	7	TH0319	9,8	7	CC0207	2.040,00
8	NY0707	10.368,00	8	CC0506	9,7	8	TP0910	2.000,00
9	Pc0504	9.800,96	9	Ct0316	9,5	9	Ct0321	1.918,00
10	PC0129	9.630,71	10	Ct0321	9,4	10	CT0332	1.908,50
11	NN0202	9.227,93	11	Ct0818	8,8	11	CC0713	1.873,00
12	Ct0717	9.164,00	12	NN0202	8,8	12	CU0616	1.828,00
13	TH0215	9.104,38	13	NN0323	8,8	13	CU0517	1.815,00
14	Ct0321	8.568,00	14	CC0511	8,4	14	IP0121	1.801,00
15	TH0926	8.341,00	15	NY0411	8,4	15	Ct0614	1.779,50

En cuanto a los niveles de vitamina "C", debemos remarcar que estos datos son resultados mediante el análisis del método de espectrofotometría, de los cuales destacan en gran medida las plantas de la cuenca del río putumayo en la cocha "Cedro".

En cuanto al rendimiento de fruta las planta Pc0504 y TH0215 reaparecen por tercer año consecutivo en el ranking destacando que estas plantas ahora forman parte de las del grupo de selectas (Cintas Rojas), por su rendimiento alto y estable durante los últimos tres años de evaluación, distinguiéndose a demás con negritas las plantas Ct0818, Ct0911 y NN0323, ocupando los primeros lugares del ranking de rendimiento por dos años consecutivos.

Este año los pesos promedios de fruto del ranking alcanzaron un máximo de 15.70 g. y un mínimo de 8.40, los cuales están en el promedio con respecto al año pasado. Y cabe destacar una vez más las plantas de la cuenca del rio putumayo obtuvieron los primeros lugares a excepción de la planta del río napo TT0725 que alcanzó el primer lugar y es una cinta roja selecta del comparativo regional de progenies.

5.3 Colección Putumayo

Esta colección fue instalada en el año 2004, consistente en 25 muestras y un total de 720 plantas. A la fecha, luego de 6 años de la instalación, hubo una mortandad de 236 plantas equivalente al 32.37%, relativamente alta. Se atribuye esta alta mortandad a la baja calidad del suelo arenoso, proximidad de árboles y ataque de plagas.

Este año se presento una escasa o nula fructificación, obteniéndose como datos de cosecha de sólo siete (7) plantas), ver cuadro 8, que equivalen al 1,43% de fructificación. Lo que indica la susceptibilidad de las plantas a los cambios de patrón del clima, encontrándose como factor determinante a la falta de lluvias por sequia prolongada y las condiciones de suelo arenoso de la planta.

Cuadro 8. Lista de Plantas dispuestas en orden de mérito de rendimiento que reportaron cosecha

de fruto en el periodo 2010.

CODIGO	Cuenca	Población	Nº frutos	Rendimi ento (g)	# promedio Semillas/f ruto	Peso Promedi o Fruto	% Pulpa	% Cascara	% Semilla	Nº Semillas			
PT0319	Putumayo	Tinta	99	1018,60	2,93	10,29	52,72	25,70	21,58	44			
PM0401	Putumayo	Molano	22	276,24	2,25	12,56	44,49	31,36	24,15	45			
PT0808	Putumayo	Tinta	18	188,90	2,67	10,49	49,61	28,27	22,11	48			
PV0203	Putumayo	Vaca poza	17	149,32	1,82	8,78				31			
PC1445	Putumayo	Cedro	21	142,68	2,60	6,79	45,43	26,81	27,76	39			
PM0412	Putumayo	Molano	5	63,10	2,80	12,62				14			
PT0206	Putumayo	Tinta	5	30,90	2,20	6,18				11			

De acuerdo al cuadro 8, podemos destacar a la planta PT0319 (Putumayo- Tina), reporto 1018 g de fruto, la planta PM0401 y PM0412 (Putumayo- Molano), representan a medias hermanas con 12,56 y 12,62 g en peso promedio de fruto.

Cuadro 9. Ranking 2010 para colección Putumayo en 4 descriptores

Rendi	imiento	Peso pror	n. Fruto	Altura de p	olanta	Diámetro de	copa	Orden
CODIGO	g/planta	CODIGO	g.	CODIGO	cm.	CODIGO	cm.	de Mérito
PV0217	879.34	PM0322	12.00	PT0735	500	PC1101	490	1
PV0424	808.70	PC1406	12.00	PT0706	450	PV0506	460	2
PM0105	631.86	PM0322	11.97	PT0102	442	PT0603	446	3
PT0303	606.22	PT0801	11.93	PC1301	440	PM0406	440	4
PM0204	598.62	PT0303	11.89	PT0305	440	PC1411	430	5
PM0412	586.62	PV0524	11.53	PT0607	440	PM0202	410	6
PT0409	556.45	PM0201	11.00	PC1441	425	PV0424	407	7
PM0304	517.19	PM0701	10.98	PM0307	425	PM0412	405	8
PV0201	480.54	PM0418	10.93	PT0202	425	PT0123	398	9
PM0118	461.98	PC1002	10.89	PV0407	425	PV0201	395	10

El cuadro 9, muestra las plantas que ya se pueden distinguir por su superioridad en producción y buena arquitectura o porte. Destacando a la planta PT0303 con alto rendimiento tamaño de fruta. Así como la planta PV0424 que está segundo en el ranking de rendimiento con 808.70 g. y también se destaca en el diámetro de copa con 407 cm.

5.4. Colección Nanay

Esta muestra fue colectada en el lago Moronillo e instalada en el año 2003. En el presente año se han identificado cinco (5) plantas Pre-pre-seleccionadas (Cinta blanca) con los codigos: NM17, NM31, NM47, NM50 y NM85 y ocho (8) plantas Pre-Seccionadas (azules), por presentar altos y estables rendimientos por dos años consecutivos, las cuales son: NM07, NM05, NM21, NM26, NM36, NM37, NM61, NM 76, ademas de la planta NM119, seleccionada previamente el años pasado (2009).

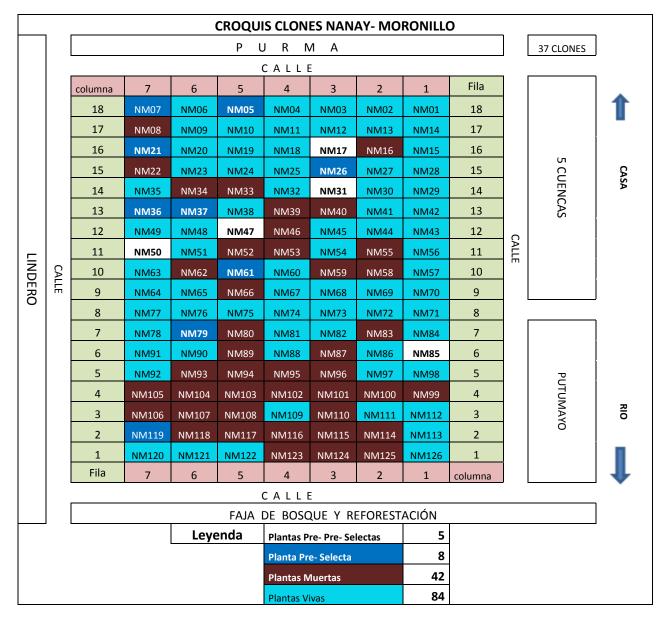


Figura 12. Croquis de la colección Nanay- Moronillo, donde se distinguen cinco (5) plantas Pre-preseleccionadas (cinta blanca) y ocho (8) plantas Pre-Seccionadas (cinta azul)

Figura 13. Colección Nanay-Moronillo con cobertura de kudzu

Cuadro 10. Ranking-2010- de colección Nanay

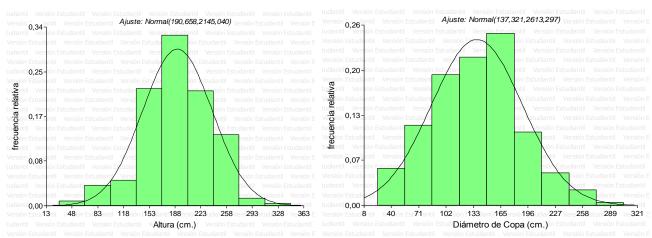
	padaro ro. re	arikirig-2010-	40 001000101	· · · · · · · · · · · · · · · · · · ·		
ОМ	CODIGO	Rendimiento	CODIGO	Peso Fruto		
	000100	(g)	000100	(g)		
1	NM-21	1418,40	NM-03	11,60		
2	NM-17	1384,00	NM-18	10,20		
3	NM-47	1229,01	NM-35	10,09		
4	NM-31	1084,83	NM-112	9,75		
5	NM-43	1013,93	NM-41	9,60		
6	NM-67	918,23	NM-36	9,48		
7	NM-37	860,37	NM-60	9,30		
8	NM-20	860,32	NM-65	9,25		
9	NM-61	838,80	NM-05	9,20		
10	NM-07	795,00	NM-57	8,66		

Se puede observar que la planta NM21 se ubica en el primer lugar del ranking de Rendimiento, coincidiendo con el rendimiento 2009, donde ocupo el segundo lugar del ranking; este año se le ha identificado como planta pre seleccionada (Azul) y que actualmente se encuentra entrando a una segunda fructificación.

Cuadro 11. Ranking de 4 descriptores morfológicos (arquitectura) en colección Nanay.

ОМ	COD.	ALTURA (cm)	ОМ	COD.	DIAMETRO COPA (cm)	1 <i>(</i>) () ()	COD.	DIAMETRO BASAL (cm)	ОМ	COD.	# RAMA BASAL
1	NM-07	390	1	NM-07	364	1	NM-64	131,24	1	NM-15	6
2	NM-37	350	2	NM-26	360	2	<u>NM-17</u>	117,45	2	NM-91	5
3	NM-20	330	3	NM-05	340	3	NM-67	111,38	3	<u>NM-17</u>	4
4	NM-109	325	4	NM-54	310	4	NM-35	110,91	4	NM-67	4
5	<u>NM-17</u>	320	5	NM-09	278	5	NM-21	107,04	5	NM-70	4
6	NM-35	320	6	NM-49	270	6	NM-15	99,77	6	NM-98	4
7	NM-18	315	7	NM-10	268	7	NM-13	99,52	7	NM-64	3
8	NM-21	315	8	NM-65	260	8	NM-20	92,13	8	NM-35	3
9	NM-24	315	9	<u>NM-17</u>	257	9	NM-31	91,5	9	NM-13	3
10	NM-67	315	10	NM-68	250	10	NM-56	89,2	10	NM-56	3

En el cuadro 11, se observa las plantas con negrita que destacan en más de un parámetro, cabe destacar que el MN17 está presente en el ranking de los 4 parámetro y es el segundo lugar del ranking de rendimiento calificándolo como individuo promisorio (pre pre seleccionado) y de buena arquitectura.


5.5. Colección Curaray-Tahuayo (CONCYTEC)

En el año 2005 fueron colectadas 171 familias en 9 cochas (poblaciones naturales) de dos cuencas: Curaray y Tahuayo (Proyecto CONCYTEC). Se dispuso para campo definitivo 32 familias con 30 individuos/familia, lo que totaliza 1080 plantas en esta colección. La instalación en campo definitivo (CESM-Parcela 10) fue ejecutada el 9 de Agosto del 2007.

Este año sólo se tiene registro de una planta que entro en fructificación, la mortandad de plantones en campo se mantuvo en 13.51%, con respecto al año pasado; se tiene en campo definitivo un número de 934 plantas vivas (ver anexos).

Cuadro 12: Parámetros evaluativos de planta que reporto fructificación en colección

CODIGO	Cuenca	Población	Nº Frutos	Rendimiento (g)	Peso Promedio Frutos (g)	% Cascara	% Semilla	% Pulpa	Nº Semilla /fruto
CQC0204	Curaray	Qda. Capihuara	4	31,3	7,83	28,02	19,84	52,14	2

Figuras 14 y 15: Distribución de frecuencia para los parámetros vegetativos de Altura de planta (cm), Izquierda y el Diámetro de Copa (cm), derecha.

Cuadro 13: Relación de plantas Pre-Pre seleccionadas por precocidad de colección Curaray – Tahuayo

Cole	Colección Curaray- Tahuayo							
ОМ	Cintas Blancas							
1	CQC0112							
2	TAUS0930							
3	CCA0301							
4	CP0124							
5	TAAF0318							
6	TAAF0108							
7	TAAF0224							
8	CQC0204							
9	TAUS0919							
10	CQC0318							

Cuadro N°14: Análisis de varianza en 4 descriptores morfológicos de La colección Curaray- Tahuayo – Sofware Infogen 2010

ANALISIS DE VARIANZA PARA EL PARÁMETRO ALTURA (cm)

	Cuadro de Análisis de la Varianza (SC tipo III)									
F.V.	F.V. SC gl CM F p-valor									
Modelo	115317.47	6	19219.58	9.45	<0,0001					
Población	115317.47	6	19219.58	9.45	<0,0001	**				
Error	1886004.58	927	2034.52							
Total	2001322.05	933								

Prueba de Significación entre Población para Altura de Planta (cm).

110	ieba de olgilliloacion entre i	oblacion par	a Aitura	ucı	iaiita	(CIII)				
Test: T	ukey Alfa=0,05 DMS=17,1392	6								
Error: 2034,5249 gl: 927										
ОМ	Población	Medias	n							
1	Ushpa-Tahuayo	205.58	196	Α						
2	Afasi- Tahuayo	200.13	136	Α	В					
3	Puma- Curaray	189.7	176	Α	В	С				
4	Huiririma- Tahuayo	188.04	94		В	С				
5	Qda Capihuara- Curaray	187.18	96		В	С				
6	Santa María- Curaray	179.53	163			С	D			
7	7 Capihuara- Curaray 168.05 73 D									
Letras	distintas indican diferencias siç	gnificativas(p<	= 0,05)							

ANALISIS DE VARIANZA PARA EL PARÁMETRO DIAMETRO DE COPA (cm)

Cuadro de Análisis de la Varianza (SC tipo III)									
F.V. SC gl CM F p-valor									
Modelo	261789.03	6	43631.51	18.58	<0,0001				
Población	261789.03	6	43631.51	18.58	<0,0001	**			
Error	2176416.61	927	2347.81						
Total	2438205.64	933				•			

Prueba de Significación entre Población para Diámetro de Copa (cm).

Pru	Prueba de Significación entre Población para Diametro de Copa (cm).										
Test: T	Test: Tukey Alfa=0,05 DMS=18,41161										
Error: 2347,8065 gl: 927											
ОМ	Población	Medias	n								
1	Ushpa-Tahuayo	161.18	196	Α							
2	Afasi- Tahuayo	153.55	136	Α	В						
3	Qda Capihuara- Curaray	137.69	96		В	С					
4	Huiririma- Tahuayo	135.17	94		В	С					
5	Puma- Curaray	123.92	176			С	D				
6	Santa María- Curaray	120.7	163			С	D				
7	7 Capihuara- Curaray 114.73 73 D										
Letras	distintas indican diferencias signifi	icativas(p<	= 0,05)								

ANALISIS DE VARIANZA PARA EL PARÁMETRO DIAMETRO BASAL (mm)

ANALISIS DI	ANALISIS DE VARIANZA PARA EL PARAMETRO DIAMETRO BASAL (IIIII)									
Cuadro de Análisis de la Varianza (SC tipo III)										
F.V. SC gl CM F p-valor Sig.										
Modelo	4745.3	6	790.88	3.83	0.0009					
Población	4745.3	6	790.88	3.83	0.0009	**				
Error	191650.72	927	206.74							
Total	196396.02	933								

Prueba de Significación entre Población para Diámetro Basal (mm).

Test:	Test: Tukey Alfa=0,05 DMS=5,46356								
Error:	Error: 206,7430 gl: 927								
OM	Población	Medias	n						
1	Ushpa-Tahuayo	35.21	196	Α					
2	Afasi- Tahuayo	34.32	136	Α					
3	Qda Capihuara- Curaray	31.84	96	Α	В				
4	Puma- Curaray	31.02	176	Α	В				
5	Huiririma- Tahuayo	30.77	94	Α	В				
6									
7	7 Capihuara- Curaray 28.41 73 B								
Letras	distintas indican diferencias significa	ativas(p<= (0,05)						

ANALISIS DE VARIANZA PARA EL PARÁMETRO NÚMERO DE RAMAS BASALES.

Cuadro de Análisis de la Varianza (SC tipo III)								
F.V. SC gl CM F p-valor Si								
Modelo	4.63	6	0.77	3.91	0.0007			
Población	4.63	6	0.77	3.91	0.0007	**		
Error	183.21	927	0.2					
Total	187.84	933				•		

Prueba de Significación entre Población para Número de Ramas Basales.

Test:	Test: Tukey Alfa=0,05 DMS=0,16892								
Error:	Error: 0,1976 gl: 927								
OM	Población	Medias	n						
1	Puma- Curaray	1.73	176	Α					
2	Ushpa-Tahuayo	1.71	196	Α					
3	3 Afasi- Tahuayo 1.68 136 A								
4	Huiririma- Tahuayo	1.62	94	Α	В				
5	Santa María- Curaray	1.62	163	Α	В				
6	Qda Capihuara- Curaray	1.57	96	Α	В				
7	7 Capihuara- Curaray 1.48 73 B								
Letras	distintas indican diferencias significativas(p <= 0,05							

Figura 16. Fructificación en coleccio Curaray-Tahuayo-CESM-IIAP

Figura 17. Evaluacion de parámetros vegetativos en colección Tigre-CESM-IIAP

Figura 18. Inicio de mantenimiento de colección "Tigre"-CESM-IIAP

5.6. Colección Tigre (INCAGRO)

En el 2006, se introdujeron 129 muestras, producto del convenio con el organismo gubernamental Innovación y Competitividad para el Agro (INCAGRO) y el IIAP. De estas, se instalaron 61 familias en el CESM con diferente número de plantas por familias, la cuales muestran un alto nivel de sobrevivencia en el campo definitivo con 86.04%, manteniéndose la cifra similar a los años 2008 y 2009.

Este año sólo se tiene registro de dos plantas que entraron en fructificación, la mortandad de plantones en campo se mantuvo en 13.51%, con respecto al año pasado; se tiene en campo definitivo un número de 934 plantas vivas (ver anexos).

Cuadro 15. Lista de las plantas que registraron producción de fruto en el 2010.

CODIGO	Cuenca	Población	Nº Frutos	Rendimiento (g)	Peso promedio Frutos (g)	% Cascara	% Semilla	% Pulpa	#semillas /fruto
TA0534	Tigre	Afasi	7	57,00	7,73	33,53	30,06	36,42	2,14
THT0432	Tigre	Huarmi Tipishca	4	34,00	8,13	33,86	14,34	51,79	2,75

Cuadro 16: Relación de plantas Pre-Pre seleccionadas por precocidad de colección Tigre- Curaray

С	olección Tigre- Curaray
ОМ	Cintas Blancas
1	TPH0123
2	CCA1923
3	THT0609
4	THT0140
5	THT0607
6	TPH0528
7	CCA1325
8	CCA1327
9	THT0431
10	THT0505
11	CCA1824
12	TA0538
13	THT0123
14	CCA1407
15	TA0402

Cuadro N°17 : Análisis de Varianza de 4 parámetros vegetativos en Colección Tigre – Curaray-Infogen 2010

ANALISIS DE VARIANZA PARA EL PARÁMETRO ALTURA DE PLANTA (cm).

	Cuadro de Análisis de la Varianza (SC tipo III)									
F.V. SC gl CM F p-valor Sig										
Modelo	6368.18	4	1592	0.82	0.5093					
Población	6368.18	4	1592	0.82	0.5093	NS				
Error	1783219	924	1929.9							
Total	1789588	928								

Prueba de Significación entre Población para Altura de Planta (cm).

Test: T	Test: Tukey Alfa=0,05 DMS=13,69909							
Error: 1	Error: 1929,8912 gl: 924							
ОМ	Población	Medias	n					
1	Lorenzo- Tigre	196.2	51	Α				
2	Puma Huacana- Tigre	192.52	165	Α				
3	Capihuara- Curaray	190.86	324	Α				
4	Aguaruna_ Tigre	187.37	204	Α				
5	Huarmi Tipishca- Tigre	186.95	185	Α				
	Letras distintas indican diferencias significan	cativas(p<= 0,0)5)					

ANALISIS DE VARIANZA PARA EL PARÁMETRO DIAMETRO DE COPA (cm).

Cuadro de Análisis de la Varianza (SC tipo III)									
F.V.	SC	gl	CM	F	p-valor	Sig.			
Modelo	30767.54	4	7691.9	3.65	0.0058				
Población	30767.54	4	7691.9	3.65	0.0058	*			
Error	1946458	924	2106.6						
Total	1977225	928							

Prueba de Significación entre Población para Diámetro de Copa (cm).

Test: T	Test: Tukey Alfa=0,05 DMS=14,31238							
Error: 2	Error: 2106,5561 gl: 924							
ОМ	Población	Medias	n					
1	Lorenzo	156.78	51	Α				
2	Aguaruna	138.46	204		В			
3	Huarmi Tipishca	136.85	185		В			
4	Puma Huacana	133.43	165		В			
5	5 Capihuara 131.59 324 B							
Letras	distintas indican diferend	ias significativa	$s(p \le 0.$.05)				

ANALISIS DE VARIANZA PARA EL PARÁMETRO DIAMETRO BASAL (mm).

Cuadro de Análisis de la Varianza (SC tipo III)								
F.V.	SC	gl	CM	F	p-valor	Sig.		
Modelo	407.49	4	101.87	0.7	0.5915			
Población	407.49	4	101.87	0.7	0.5915	NS		
Error	134312.6	924	145.36					
Total	134720.1	928						

Prueba de Significación entre Población para Diámetro basal (mm).

Test: 1	Test: Tukey Alfa=0,05 DMS=3,75965								
Error:	Error: 145,3599 gl: 924								
ОМ	Población	Medias	n						
1	Huarmi Tipishca	28.19	185	Α					
2	Capihuara	28.12	324	Α					
3	Puma Huacana	28.06	165	Α					
4	Lorenzo	27.53	51	Α					
5	5 Aguaruna 26.52 204 A								
Letras	distintas indican diferencia	as significativa	ıs(p<= (),05)					

ANALISIS DE VARIANZA PARA EL PARÁMETRO NÚMERO DE RAMAS BASALES.

Cuadro de Análisis de la Varianza (SC tipo III)								
F.V. SC gl CM F p-valor Signature								
Modelo	1.78	4	0.45	2.43	0.0465			
Población	1.78	4	0.45	2.43	0.0465	NS		
Error	169.98	924	0.18					
Total	171.76	928						

Prueba de Significación entre Población para Número de Ramas Basales.

Test: 7	Test: Tukey Alfa=0,05 DMS=0,13375							
Error:	Error: 0,1840 gl: 924							
OM	Población	Medias	n					
1	Puma Huacana	1.65	165	Α				
2	Aguaruna	1.57	204	Α				
3	Huarmi Tipishca	1.56	185	Α				
4	Capihuara	1.53	324	Α				
5	5 Lorenzo 1.52 51 A							
Letras	distintas indican diferencias	significativas(p<= 0,0	5)				

5.7. Comparativo de 37 clones

En el presente año 2010, se continúo con el sexto año de evaluación de parámetros vegetativos y reproductivos del comparativo de 37 clones de camu-camu, los mismos que fueron evaluados consecutivamente a los 5, 9, 23, 35, 46, 58, **69 y 71** meses de la plantación (a los 6 años de edad).

Al analizar el parámetro vegetativo "longitud de hoja" (cm.), se pudo observar en el cuadro de análisis de varianza, que no existen diferencias significativas para los clones y sus repeticiones respectivas (Sig=0,0887; Sig=0,0976), El coeficiente de variación fue 12,52% y está expresando que no han existido variaciones inherentes en los clones en estudio. De igual manera no se encontró diferencia significativa para el parámetro "longitud de peciolo" (cm), entre los clones y sus repeticiones respectivas (sig=0,5133; sig=0,989). Con un coeficiente de variación de 17,92%.

Para los parámetros: "ancho de hoja", "diámetro basal promedio", "diámetro basal total" y "número de ramas basales" se encontraron diferencias altamente significativas entre clones, con valores de significación de 0.0001, 0.0108, 0.0001 y 0.0027 respectivamente.

Al analizar el "numero de flores", se encontró que no existe hasta el momento diferencias significativas entre los clones. Sin embargo, este análisis es preliminar dado a que el proceso de floración y fructificación se ha retrasado en el presente año y aun no concluye.

El orden de merito respecto al número de flores, ubica en los primeros lugares a los clones: **37** (Requena - Lago Avispa, Alfredo Mazuca), **44** (Vaca posa, Rodal natural), **48** (rio Putumayo, Molano, Rodal natural), **18** (rio Nanay - Nina Rumi, Rodal natural) y **49** (rio Molano, Rodal natural). En este sexto año de evaluación, se registro una destacada floración con 2,540 flores/planta en la planta II-37. Cabe nombrarse que de estos cinco clones, solo el 44 se encuentra también en los primeros lugares del orden de merito con respecto a la longitud de peciolo.

Los resultados referidos a floración, en el presente año, se modificaran sustancialmente de acuerdo a las nuevas floraciones de plantas que irán apareciendo en el comparativo en las próximos meses finales del 2010. Estos resultados muestran la necesidad de seguir evaluando por varios años, los parámetros del Ideotipo, de modo que pueda lograrse mayor confiabilidad en la selección de plantas superiores.

Cuadro N°18. Resumen del análisis de varianza para 37 clones a los 5, 9, 23,35, 46, 58, 69 y 71 meses de la instalación del comparativo en el CESM

Meses de la plantación	Altura Planta	Diámetro Basal Total	Diámetro Basal Promedio	Diámetro Copa	Numero Ramas Basales	Longitud de Hoja	Ancho de Hoja	Longitud de Peciolo	Numero Flores
5	NS	NS	NS			-	-	-	
9	NS	*	NS			-	-	-	
23	*	*	**	**	**	-	-	-	
35	*	NS	*		NS	-	-	-	NS
46	NS	**	NS	*	**	-	-	-	NS
58	NS	NS	NS	**	NS	-	-	-	*
69	-	-	-	-	-	NS	**	NS	NS
71	-	**	**	-	**	-	-	-	-

En el Cuadro 18, se muestra la significación estadística para 7 parámetros evaluados y que corresponden a los 5, 9, 23, 35, 46, 58, 69 y 71 meses desde la plantación en campo definitivo. La diferencia en el "diámetro basal total" luego de 9 meses de la plantación fue significativa entre los 37 clones evaluados. Para el caso de las evaluaciones a los 23 meses, todos los parámetros considerados muestran diferencia significativa entre los clones. De los seis parámetros evaluados a los 35 meses, dos de ellos resultaron significativos: "diámetro basal promedio" y "altura de planta". A los 46 meses varían estas tendencias existiendo significación en los parámetros "diámetro basal total" y "diámetro de copa", y "numero de ramas basales". A los 58 meses las tendencias se muestran de este modo, significativo para el parámetro "número de ramas básales" y no significativo para los demás parámetros. A los 69 meses las evaluaciones de parámetros vegetativos nos muestra que "Ancho de Hoja" resulto altamente Significativo entre clones; para los otros parámetros como: "Longitud de hoja", "Longitud de Peciolo" y Número de flores resulto no significativo. A los 71 meses de

evaluación el "diámetro basal promedio", "diámetro basal total" "numero de ramas basales" resultaron Altamente significativos entre clones.

- -El nivel de sobrevivencia se mantiene alto (98.65%); El crecimiento y desarrollo fue satisfactorio luego de 71 meses del establecimiento con mortandad que se mantuvo en niveles de 1,35 %.
- -Luego de 69 y 71 meses de evaluación en campo definitivo se ha observado un incremento de la floración y de algunos clones como por ejemplo el clon II 37 que llego a tener 2540 flores, seguido del clon 44 del bloque I con 566 flores, el mismo que aumento el numero de 6 flores mas en las dos semanas posteriores; en el tercer lugar se encuentra nuevamente el clon 48 del bloque III con 428 flores. En el comparativo se tiene un total de 61 plantas con flores dentro de la prueba genética, cuyo porcentaje haciende a 48.54% de floración.
- -En el presente año se ha encontrado diferencia Altamente significativa entre clones para los parámetros: "Ancho de Hoja", "diámetro Basal Promedio", "diámetro basal total" y "número de ramas basales" y nos se encontró diferencia estadística significativa para los demás parámetros evaluados (Longitud de hoja, longitud de peciolo y Numero de flores).
- -Luego del análisis de 5 evaluaciones (2005, 2006, 2007, 2008 y 2009) se agrupan como los prioritarios a los clones **18, 44, 50, 61 y 69** y en un segundo grupo a los clones **14, 29, 35, 48 y 52,** de los cuales en la 6 evaluación realizada en el 2010, el clon **44** se muestra nuevamente sobresaliente con respecto al número de flores; Además resulto que el clon 37 sobresalió por primera vez en el número de flores con la planta **II-37** que tuvo 2540 flores.
- -El presente año la prueba genética del comparativo de clones no ha sido afecta por la dinámica del flujo de las aguas, ya que este año no se presento una creciente sobresaliente en comparación del año pasado la cual represento un desabastecimiento de agua en la parcela y por consiguiente aumento la presencia de plagas en las plantas del comparativo; además esto afecto la estacionalidad de la producción de fruta por parte de las plantas de camu camu produciendo un retraso en la producción.

5.8. Comparativo de 108 progenies precoces

Durante los años 2005 y 2006 se identificaron, colectaron y evaluaron 715 plantas precoces procedentes de los campos experimentales del CESM, con un total de 7488 plantones. De estas fueron seleccionadas aquellas familias que tenían un número mayor o igual a 20 plantas resultando según este criterio una cantidad de 108 plantas. Estas fueron instaladas en el año 2007 en el CESM bajo un diseño de Bloque Completo Aleatorizado con 4 repeticiones y 3 plantas por unidad experimental.

Las plantas fueron evaluadas aplicando los parámetros: Diámetro de Copa, Diámetro Basal, Altura de Planta y Número de Ramas Basales. Se han evaluado estadísticos descriptivos, se graficaron los histogramas de frecuencias para cada una de estas variables, así como el análisis de varianza también para las cuatro variables.

Este año fue un año de una escasa fructificación por lo que se vio afectado los rendimientos, encontrándose un total de 53 plantas que reportaron cosecha de fruta, que representa tan solo a un 4,50% del total.

Figura 19. Inicio de mantenimiento en comparativo de 108 progenies precoces

Cuadro 19: Ranking de plantas precoces al tercer año de la instalación en campo definitivo

nº	Código Progenie- Bloq- #Planta	Nº Total frutos	Rendimiento (g)	#Prom Semilla/fruto	Peso Promedio fruto (g)
1	37-I-3	66	419,29	2,7	6,35
2	191-I-2	54	404,46	-	7,49
3	223-I-3	42	385,84	2,8	9,19
4	22-II-1	51	327,42	2,1	6,42
5	68-III-3	48	247,62	2,3	5,16
6	222-I-1	33	239,88	2,3	7,27
7	223-I-3	25	189,13	-	7,57
8	85-IV-1	29	176,14	-	6,07
9	50-III-1	21	161,90	-	7,71
10	224-IV-3	16	135,31	-	8,46
11	32-IV-1	24	130,08	2,3	5,42
12	10-IV-3	15	125,77	-	8,38
13	50-III-2	15	117,86	2,3	7,86
14	222-II-2	8	78,70	2,5	9,84
15	50-II-3	12	69,71	2,4	5,81

En el presente año se ha sometido a la prueba genética del comparativo de 108 progenies al análisis de Selcción Genética mediante el software SELEGEN (REML-BLUM) para una mayor eficiencia en la selección de individuos y de las mejores progenies en las cuatro variables.

En el presente año según 4 "parámetros vegetativos" evaluados destacaron las progenies 1, 10, 21, 54, 221 y 222, (Ver Matrices y resultados en los respectivos Anexos).

Cuadro 20. Estadísticos descriptivos de 4 Parámetros vegetativos de 108 Progenies Precoces

	N	Mínimo	Máximo	Media	Desv. típ.
ALTURA	432	101,67	328,33	199,3103	50,46087
DIACOPA	432	59,67	264,00	143,5742	33,47776
DIABASA	432	11,48	185,09	33,8309	12,94711
NUMRABA	432	,50	6,33	2,6025	,93061
N válido (según lista)	432				

6. Conclusiones

6.1.Generales

En el presente año, se han logrado avances en cuanto a colección de dos nuevas poblaciones (Yavari y Mazan) asi como la evaluación de germoplasma básico y pruebas genéticas: evaluación de 3 grupos de germoplasma básico (5 cuencas, putumayo, nanay, cuararay- tahuayo, tigre), evaluación de 2 pruebas genéticas o comparativos de progenies (37 clones y 108 progenies). Asimismo, en el presente se ha complementado la selección de individuos superiores mediante el software de selección genética SELEGEN (REML- BLUP).

Se han identificado 59 plantas promisorias y 8 plantas seleccionadas por su rendimiento destacado durante tres años consecutivos en tres colecciones básicas (5 cuencas, putumayo y nanay) y dos pruebas genéticas, las mismas que constituyen una base apropiada para una primera etapa de selección planteada en el Plan de Mejoramiento Genético del Camu-camu - PMGC)

6.2. Especificas

Colección cinco cuencas

En cuanto a contenido de vitamina C se evaluaron 218 plantas que presentaron valores entre 693.0 mg y 2951 mg con una diferencia altamente significativa entre Poblaciones o cochas (Fc=2.304 Sig=<0.001). Destacando la cocha Chevarrea de la cuenca del curaray con una media Poblacional de 1588.22 mg. Se han seleccionado en forma individual las plantas: PC0302, NY0413, PC0430, PC0120, PC0214, TH0824 y CC0207 que presentaron alto contenido de vitamina C (>2000 mg) y la menor desviación estandar (d.e. 4 a 12,66), entre repeticiones. Destacaron en el presente año por tamaño de fruta las siguientes plantas: NN0419 con 14.92 g/fr, PC0621 con 14.68 g/fr, PC0120 con 14.36 g/fr, Pc0511 con 14.00 g/fr, CT0315 con 13.23 g/fr.

En cuanto al rendimiento de fruta fresca (a los 8 años de la plantación), ocuparon los primeros 15 lugares las plantas: Ct0818 con 21.225,00 g/pl. Ct0911 con 14.156,90 g/pl. NN0323 con 14.119.00 g/pl. TH0319 con 13.989,00 g/pl. Ct0316 con 11.096,00 g/pl. CC0511 con 10.593,30 g/pl. Ct0223 con 1º.429,00 g/pl. NY0707 con 10.368,00 g/pl. Pc0504 con 9.801,00 g/pl. PC0129 con 9.630,71 g/pl. NN0202 con 9.227,93 g/pl. Ct0321 con 8.568,00 g/pl. y TH0926 con 8.341,00 g/pl.

Colección Putumayo

Luego de 3 años de la instalación, hubo una mortandad de 28%, relativamente alta en comparación con la colección 5 cuencas.

Este año se presento una escasa o nula fructificación, obteniéndose como datos de cosecha de sólo siete (7) plantas), ver cuadro 8, que equivalen al 1,43% de fructificación. Lo que indica la susceptibilidad de las plantas a los cambios de patrón del clima, encontrándose como factor determinante a la falta de lluvias por sequia prolongada y las condiciones de suelo arenoso de la planta.

Colección Nanay

El material, propagado mediante estacas fue colectado en el lago moronillo (afluente del rio Nanay), e instalado en Diciembre - 2003. La mortandad promedio se ha incrementado de 10.52% en el año 2005 a 28% en el año 2010, conservando el porcentaje con respecto a los años 2008 y 2009.

Se han identificado cinco (5) plantas Pre-pre-seleccionadas y ocho (8) plantas como planta Pre-Seccionadas (azules), por presentar alto rendimiento y estable en dos años de evaluaciones, los cuales son: NM07, NM05, NM21,NM26, NM36, NM37, NM61, NM 76 Y NM119.

En el presente año se incrementado la fructificación a un 46,28%, el estado actual de la parcela es el de floración, que se vio retardada por la prolongada sequia reportada como la más alta reportada en las ultimas décadas.

Colecciones CONCYTEC e INCAGRO

En el presente año, fueron instaladas en el CESM, 32 familias (1080 plantas) colectadas en el año 2005 en las cuencas Curaray y Tahuayo (en alianza con COCYTEC). Este año sólo se tiene registro de una planta que entro en fructificación, la mortandad de plantones en campo se mantuvo en 13.51%, con respecto al año pasado; se tiene en campo definitivo un número de 934 plantas vivas.

Procedentes de la cuenca del Tigre fueron instaladas 61 muestras en el CESM (1080 plantas), actividad de complementación al Proyecto INCAGRO cuya colección tuvo lugar en el año 2006. Este año sólo se tiene registro de dos plantas que entraron en fructificación, la mortandad de plantones en campo se mantuvo en 13.51%, con respecto al año pasado; se tiene en campo definitivo un número de 934 plantas vivas

Comparativo de 37 clones

Luego de 69 y 71 meses de evaluación en campo definitivo se ha observado un incremento de la floración y de algunos clones como por ejemplo el clon II – 37 que llego a tener 2540 flores, seguido del clon 44 del bloque I con 566 flores, el mismo que aumento el numero de 6 flores mas en las dos semanas posteriores; en el tercer lugar se encuentra nuevamente el clon 48 del bloque III con 428 flores. En el comparativo se tiene un total de 61 plantas con flores dentro de la prueba genética, cuyo porcentaje haciende a 48.54% de floración.

Comparativo de 108 progenies

Durante los años 2005 y 2006 se identificaron, colectaron y evaluaron 715 plantas precoses procedentes de los campos experimentales del CESM, con un total de 7488 plantones. De estas fueron seleccionadas 108 familias que tenían un numero mayor o igual a 20 plantas

Las 108 progenies fueron instaladas en el presente año en el CESM bajo un diseño de Bloque Completo Aleatorizado con 4 repeticiones y 3 plantas por unidad experimental. Las plantas fueron evaluadas aplicando los parámetros: Diámetro Basal. Altura de Planta, Numero de Ramas Basales y Numero de Puntas.

Según la evaluacion efectuada, fueron seleccionadas como promisorias las siguientes 15 plantas en el siguiente orden de merito: 56-1, 25-5, 56-3, 74-10, 74-6, 17-3, 63-3, 35-9, 30-2, 69-2, 61-12, 60-12, 102-1, 15-2 y 40-4.

7. Recomendaciones

En la colección de 5 cuencas, continuar con evaluaciones de las plantas que resultaron seleccionadas en el presente estudio, por lo menos por dos años mas a fin de validar las plantas selectas identificadas y para lograr una aproximación mas confiable hacia el ideotipo

Complementar la evaluación en las colecciones con fructificación, con análisis químicos precisos de la pulpa (acido ascórbico, aminoácidos, fierro, etc.)

Iniciar la planificación de un comparativo regional de clones (Iquitos y Pucallpa) donde se incluirian los materiales de INIA e IIAP tanto en Iquitos como en Pucallpa.

Aplicar abonamiento orgánico y control de plagas a las plantas selectas identificadas en el presente estudio, con el fin de enfatizar, con minimización de influencias erráticas, en las siguientes evaluaciones sobre parámetros reproductivos (cantidad y calidad de fruta)

8. Bibliografía

- Bardales R, Pinedo M (2009). Determination of components of genetic variation and hereditability of a few characteristics of interest in camu-camu. Peruvian Amazonia Research Institute. 21pp.
- Delgado C, Couturier G (2004). Management of insect pests in the Amazon: its application in camu-camu. Research Institute of the Peruvian Amazonia & Institut de recherche pour le développement. Iquitos/Francia. 147pp.
- Flores S (1997). Cultivation of Native Fruit Trees of the Amazon. Manuel for the extension worker. In: Treaty of Amazonian Cooperation. Lima (Perú): Secretaría Pro Tempore. Pp. 55-62.
- Guillen I, Pinedo M (2007). Evaluation and Maintenance of Germplasm of camu-camu collected from natural collections. Research Institute of the Peruvian Amazonia. Program Integrated Management of the Forest and Environmental Services PROBOSQUES. Iquitos Perú. 50pp.
- Imán S (2000). Characterization and Evaluation Morpho-agronomical of Germplasm of Camu-Camu Myrciaria dubia Mc Vaugh. Experimental Agricultural Station "San Roque," INIA, Iquitos, Peru). 8pp.
- Inga H, Pinedo M, Delgado C, Linares C, Mejía K (2001). Reproductive phenology of Myrciaria dubia Mc Vaugh H.B.K. (camu-camu)). Research Institute of the Peruvian Amazonia. Program Integrated Management of the Forest and Environmental Services PROBOSQUES. Iquitos. 7pp.
- INRENA (2000). National Program National Camu-Camu Program 2000-2020. National Institute of Natural Resources. Development Unit of the Amazon. March, 2000.
- Oliva C, Vargas V, Linares C (2005). Selection of promising mother plants of Myrciaria dubia (HBK) Mc Vaugh, bush camu-camu, in Ucayali, Peru. Folia Amazónica 14 (2): 85-89.
- Peters M, Vásquez A (1986). Ecological Studies of camu-camu Myrciaria dubia. I. Fruit Production in Natural Populations). En: Acta Amazónica 16 -17 (Single Number). Brasil. 161-174 pp.
- Pinedo, M. et al. 2001; Sistema de Producción de Camu-Camu en Restinga, Instituto de Investigaciones de la Amazonia Peruana, Programa de Ecosistemas Terrestres. Loreto-Perú. 141p.
- Pinedo, M. et al. 2004; Plan de Mejoramiento Genético de camu-camu, Instituto de Investigaciones de la Amazonia Peruana, Programa de Ecosistemas Terrestres. Loreto-Perú.52p.
- Pinedo M, Riva R, Rengifo E, Delgado C, Villacrez J, Gonzales A, Inga H, López A, Farroñay R, Vega, R, Linares C (2001). Production System for Camu-Camu in Levees). Research Institute of the Peruvian Amazonia. Program Integrated Management of the Forest and Environmental Services PROBOSQUES. Loreto-Peru. 141pp.
- Riva R, Gonzales I (1999). Technique for cultivating camu-camu Myrciaria dubia KBK Mc Vaugh in the Peruvian Amazon). Ministry of Agriculture. National Institute of Agricultural Research. Experimental Station Pucallpa. 45pp.
- Stoller S.A. (2009). Fruit-Drop in Summer. Technical Bulletin PEP Stoller. Stoller Peru S.A. Lima, Peru. 2pp.
- Yuyama K, Aguiar J, Yuyama L (2002). Camu-Camu: A fantastic fruit as a source of vitamin C). Acta Amazonica. 32(1): 169-174.

9. Anexos

Cuadro A-1. Pruebas de los efectos inter-Cuencas para nivel de ácido ascórbico de plantas en colección 5 cuencas

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC		gl	CM	F	p-valor
Modelo		2361,23	4	590,31	0,01	0,9999
Cuenca		2361,23	4	590,31	0,01	0,9999
Error		4623308,9	64	72239,2		
Total	4	625670,12	68			

Cuadro A-2. Prueba de medias para nivel de a.a de plantas en colección 5 cuencas

Test:Duncan Alfa=0,05

Error: 72239,2015 gl: 64

ОМ	Cuenca	Medias	n	
1	Putumayo	1262,36	23	а
2	Itaya	1260,58	13	а
3	Tigre	1252,31	20	а
4	Curaray	1249,97	5	а
5	Napo	sd	0	

Letras distintas indican diferencias significativas(p<= 0,05)

Cuadro A-3. Pruebas de los efectos inter- Poblaciones o cochas para nivel de a.a de plantas en colección 5 cuencas

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gl	CM	F	p-valor
Modelo	371639,83	10	37163,98	0,51	0,8785
Población	371639,83	10	37163,98	0,51	0,8785
Error	4254030,29	58	73345,35		
Total	4625670,12	68			

Cuadro A-4. Prueba de medias para nivel de a.a por cochas en colección 5 cuencas

Test:Duncan Alfa=0,05 Error: 73345,3498 gl: 58

		- 0		
OM	Población	Medias	n	
1	Pava	1437,00	1	а
2	Chevarrea	1365,88	6	а
3	Yuracyacu	1362,60	8	а
4	coto	1289,67	3	а
5	Pelejo	1260,58	5	а
6	Huacamayo	1260,10	14	а
7	Cedro	1245,98	5	а
8	tostado	1219,57	6	а
9	Ttipishca	1215,6	8	а
10	Urco	1185,84	8	а
11	Núñez	1107,08	5	а
12	Tipishca	sd	0	
13	Unión	sd	0	

Letras distintas indican diferencias significativas(p<= 0,05)

Figura A-1: Histograma de frecuencia para Nivel de ácido ascórbico en plantas de la colección 5 cuencas

Cuadro A-5. Prueba de Medias para "Número de frutos cosechados" de plantas en colección 5 cuencas

Test:Duncan Alfa=0,05 Error: 142031,2986 gl:

194

OM	Cuenca	Medias	n	
1	Curaray	333,28	17	а
2	Napo	314,84	2	а
3	Tigre	226,18	72	а
4	Putumayo	216,50	45	а
5	Itaya	177,00	43	а

Letras distintas indican diferencias significativas(p<= 0,05)

Cuadro A-6. Prueba de Medias para "Rendimiento de fruta cosechada" de plantas en colección 5 cuencas

Test:Duncan Alfa=0,05

Error: 9689834,7291 gl: 251

ОМ	Cuenca	Medias	n	
1	Curaray	2905,64	18	а
2	Napo	2337,85	2	а
3	Putumayo	2208,39	72	а
4	Tigre	2168,18	88	а
5	Itaya	1641,69	51	а

Cuadro A-7. Prueba de Medias para "Peso promedio de fruto" de plantas en colección 5 cuencas

Test:Duncan Alfa=0,05

Error: 3,3452 gl: 158

ОМ	Cuenca	Medias	n			
1	Putumayo	10,06	38	а		
2	Tigre	9,46	57	а		
3	Curaray	8,86	15	а	b	
4	Napo	7,98	2		b	
5	Itaya	7,9	32		b	

Letras distintas indican diferencias significativas(p<= 0,05)

Cuadro A-8. Prueba de Medias para "Porcentaje de cáscara" de plantas en colección 5 cuencas

Test:Duncan Alfa=0,05

Error: 23,5999 gl: 149

ОМ	Cuenca	Medias	n	
1	Tigre	31,08	53	а
2	Putumayo	30,6	42	а
3	Napo	29,82	2	а
4	Itaya	28,8	31	а
5	Curaray	28,32	11	а

Letras distintas indican diferencias significativas(p<= 0,05)

Cuadro A-9. Prueba de Medias para "Porcentaje de semilla" de plantas en colección 5 cuencas

Test:Duncan Alfa=0,05

Error: 21,5536 gl: 149

ОМ	Cuenca	Medias	n	
1	Itaya	28,58	31	а
2	Tigre	26,94	53	a b
3	Napo	25,02	2	b
4	Curaray	23,57	11	b
5	Putumayo	23,56	42	b

Letras distintas indican diferencias significativas(p<= 0,05)

Cuadro A-10. Prueba de Medias para "Porcentaje de pulpa" de plantas en colección 5 cuencas

Test:Duncan Alfa=0,05

Error: 70,0452 gl: 141

OM	Cuenca	Medias	n		
1	Itaya	52,35	33	а	
2	Curaray	51,64	13	а	
3	Tigre	51,15	44	а	b
4	Putumayo	48,73	43	а	b
5	Napo	45,39	2		b

Cuadro A-11. Prueba de Medias para "Número promedio de semilla/ fruto" de plantas en colección 5 cuencas

Test:Duncan Alfa=0,05

Error: 0,1208 gl: 166

OM	Cuenca	Medias	n	
1	Itaya	2,66	37	а
2	Tigre	2,62	58	а
3	Curaray	2,48	13	а
4	Putumayo	2,47	44	а
5	Napo	2,42	2	а

Letras distintas indican diferencias

significativas

 $(p \le 0.05)$

Cuadro A-12. Prueba de Medias para "Grados Brix" de plantas en colección 5 cuencas

Test:Duncan Alfa=0,05

Error: 0,5578 gl: 37

ОМ	Cuenca	Medias	n	
1	Tigre	6,54	17	a
2	Putumayo	5,9	5	a
3	Itaya	3,76	10	b
4	Napo	sd	0	
5	Curaray	sd	0	

Letras distintas indican diferencias

significativas(p<= 0,05)

Cuadro A-13. Prueba de Medias para "Número de frutos cosechados" por cochas en colección 5 cuencas

Test:Duncan Alfa=0,05

Error: 135027,3205 gl: 186

	/ 0					_
ОМ	Población	Medias	n			
1	tostado	475,83	29	Α		
2	Chevarrea	420,29	17	Α	В	
3	Unión	396	1	Α	В	
4	Yuracyacu	356,83	24	Α	В	
5	coto	339,25	8	Α	В	
6	Núñez	266,86	21	Α	В	
7	Huacamayo	261,29	31	Α	В	
8	Tipishca	224	3	Α	В	
9	Pelejo	163,31	16	Α	В	
10	Ttipishca	153,77	13	Α	В	
11	Cedro	134,67	12	Α	В	
12	Urco	103,48	23	Α	В	
13	Pava	79	1		В	

Cuadro A-14. Prueba de Medias para "Rendimiento de fruta fresca" por cochas en colección 5 cuencas

Test:Duncan Alfa=0,05 Error: 9357392,3649 gl: 243

F	, ,	I	ı	1	
OM	Población	Medias	n		
1	tostado	3956,18	37	Α	
2	Unión	3699,96	1	Α	В
3	Chevarrea	3590,83	20	Α	В
4	coto	3003,23	11	Α	В
5	Pava	2520,66	5	Α	В
6	Yuracyacu	2454,68	29	Α	В
7	Núñez	2196,68	24	Α	В
8	Huacamayo	2188,66	49	Α	В
9	Ttipishca	2014,50	18	Α	В
10	Cedro	1583,88	14	Α	В
11	Pelejo	1520,61	17	Α	В
12	Urco	1231,77	26	Α	В
13	Tipishca	1094,93	5		В

Letras distintas indican diferencias significativas(p<= 0,05)

Cuadro A-15. Prueba de Medias para "Peso promedio de fruto" por cochas en colección 5 cuencas

Test:Duncan Alfa=0,05 Error: 3,3010 gl: 150

ОМ	Población	Medias	n			
1	coto	10,69	8	Α		
2	Huacamayo	9,74	25	Α	В	
3	Cedro	9,60	11	Α	В	С
4	tostado	9,37	23	Α	В	С
5	Unión	9,34	1	Α	В	С
6	Ttipishca	8,93	12	Α	В	С
7	Urco	8,82	21	Α	В	С
8	Pava	8,70	1	Α	В	С
9	Núñez	8,33	16		В	С
10	Chevarrea	8,07	11		В	С
11	Pelejo	7,80	14		В	С
12	Yuracyacu	7,68	18		В	С
13	Tipishca	7,61	2			С

Cuadro A-16. Prueba de Medias para "Porcentaje de cáscara" por cochas en colección 5 cuencas

Test:Duncan Alfa=0,05 Error: 23,8555 gl: 141

014	Doblosión	Madiaa		
ОМ	Población	Medias	n	
1	Cedro	31,55	8	Α
2	Huacamayo	31,48	27	Α
3	Ttipishca	30,75	13	Α
4	Tipishca	30,68	2	Α
5	Unión	29,99	1	Α
6	Núñez	29,89	14	Α
7	tostado	29,83	21	Α
8	Yuracyacu	29,76	19	Α
9	coto	29,51	7	Α
10	Pelejo	28,68	10	Α
11	Pava	27,87	2	Α
12	Chevarrea	27,75	10	Α
13	Urco	26,79	20	Α

Letras distintas indican diferencias significativas(p<= 0,05)

Cuadro A-17. Prueba de Medias para "Porcentaje de semilla" por cochas en colección 5 cuencas

Test:Duncan Alfa=0,05 Error: 21,6764 gl: 141

ОМ	Población	Medias	n			
1	Pelejo	28,87	10	Α		
2	Huacamayo	27,04	27	Α	В	
3	Ttipishca	26,82	13	Α	В	
4	Pava	26,30	2	Α	В	С
5	Núñez	25,90	14	Α	В	С
6	Unión	25,67	1	Α	В	С
7	Chevarrea	25,46	10	Α	В	С
8	Cedro	24,82	8	Α	В	С
9	Yuracyacu	24,36	19	Α	В	С
10	Urco	24,30	20	Α	В	С
11	tostado	22,22	21		В	С
12	coto	22,11	7		В	С
13	Tipishca	20,97	2			С

Cuadro A-18. Prueba de Medias para "Porcentaje de pulpa" por cochas en colección 5 cuencas

Test:Duncan Alfa=0,05 Error: 70,0903 gl: 133

OM	Población	Medias	n			
1	coto	54	6	Α		
2	Chevarrea	53,3	10	Α	В	
3	Urco	52,67	12	Α	В	
4	Pelejo	52,54	12	Α	В	
5	Pava	51,5	2	Α	В	С
6	Ttipishca	51,14	14	Α	В	С
7	Huacamayo	51,13	27	Α	В	С
8	Tipishca	50,5	2	Α	В	С
9	tostado	50,3	20	Α	В	С
10	Unión	50	1	Α	В	С
11	Núñez	47,25	16	Α	В	С
12	Yuracyacu	43,82	19		В	С
13	Cedro	42,4	5			С

Letras distintas indican diferencias significativas(p<= 0,05)

Cuadro A-19. Prueba de Medias para "Número promedio de semillas/ fruto" por cochas en colección 5 cuencas

Test:Duncan Alfa=0,05 Error: 0,1211 gl: 158

	D. H. L	N A1'		
OM	Población	Medias	n	
1	Pelejo	2,67	12	Α
2	Huacamayo	2,65	28	Α
3	Chevarrea	2,62	12	Α
4	coto	2,62	8	Α
5	Pava	2,58	2	Α
6	Ttipishca	2,57	14	Α
7	Unión	2,5	1	Α
8	Núñez	2,49	17	Α
9	Urco	2,48	20	Α
10	tostado	2,43	24	Α
11	Yuracyacu	2,37	22	Α
12	Cedro	2,34	9	Α
13	Tipishca	2,29	2	Α

Cuadro A-20. Prueba de Medias para "Grados Brix" por cochas en colección 5 cuencas

Test:Duncan Alfa=0,05

Error: 0,5816 gl: 31

ОМ	Población	Medias	n		
1	Tipishca	8,00	1	а	
2	tostado	6,80	8	а	b
3	Yuracyacu	6,68	6		b
4	Urco	6,62	6		b
5	Chevarrea	6,55	2		b
6	Huacamayo	6,55	4		b
7	Ttipishca	6,50	1		b
8	Núñez	6,28	4		b
9	coto	6,15	4		b
10	Cedro	5,70	5		b
11	Pava	sd	0		
12	Pelejo	sd	0		
13	Unión	sd	0		

Letras distintas indican diferencias significativas(p<= 0,05)

olección Putumayo

Cuadro B-1. Análisis de varianza en 4 descriptores morfológicos de La colección Putumayo- Sofware Infogen 2010

Análisis de la varianza

Cuadro de Análisis de la Varianza (SC tipo III)									
Variable	F.V.	SC	gl	CM	F	p-valor	CV		
Altura	Cocha	43804,72	3	14601,57	3,28	0,0209*	22,56		
	Error	2137936,71	480	4454,03					
	Total	2181741,43	483						
Diámetro de Copa	Cocha	20692,49	3	6897,5	1,33	0,2652	34,25		
	Error	2496615,22	480	5201,28					
	Total	2517307,71	483						
Diámetro Basal	Cocha	213,25	3	71,08	0,17	0,9152	39,69		
	Error	198245,76	480	413,01					
	Total	198459,01	483						
Numero de ramas	Cocha	1,45	3	0,48	0,43	0,7318	45,09		
basales	Error	538,54	480	1,12					
	Total	539,99	483						

Cuadro B-2. Prueba de Tukey en 4 descriptores morfológicos de La colección Putumayo- Sofware Infogen 2010

					V	/aria	ables					
Altu	ıra (cm)			Diámetro d	le Copa (cn	n)	Diámetro l	Basal (mm))	Numero de ramas basale		
Test:Tukey Alfa=0,05 DMS=22,64477 DMS=24,47069 France 4454,0040							Test:Tukey A DMS=6,8956	,		Test:Tukey Alfa=0,05 DMS=0,35940		
Error: 4454 gl: 480	,0348			Error: 5201,2817 gl: 480			Error: 413,01 gl: 480	20		Error: 1,1220	gl: 480	
Cocha	Medias			Cocha	Medias		Cocha	Medias		Cocha	Medias	
Tinta	302,95	а		Vacapoza	218,95	а	Molano	51,94	а	Tinta	2,42	а
Molano	300,60	а	b	Molano	214,71	а	Tinta	51,62	а	Cedro	2,36	а
Vacapoza	298,27	а	b	Cedro	210,96	а	Cedro	50,5	а	Vacapoza	2,32	а
Cedro 278,76 b Tinta 201,7						а	Vacapoza	50,38	а	Molano	2,28	а
Letras distir	ntas indica	an d	difere	encias signific	ativas(p<=	0,0	5)					

Colección Nanay – Moronillo

Cuadro C-1. Matriz de evaluación de cuatro variables en colección Nanay

ОМ	CODIGO	A.A	Nο	Rendmto (g)	Peso Total frutos Colectados	%Cascara	%Semilla	%Pulpa	Nº Semillas	#Prom Semilla/pl	Peso Prom. Fruto
1	NM-21		197	1418,40	1372	27,12	23,03	49,85	63	3,2	7,20
2	NM-17		167	1384,00	1384	27,26	28,79	43,95	53	2,7	
3	NM-47		213	1229,01	1141						5,77
4	NM-31	639,8	136	1084,83	1043	25,76	24,00	50,24	55	2,8	7,98
5	NM-43		134	1013,93	877	30,74	22,27	46,99	52	2,6	7,57
6	NM-67		126	918,23	973				15	1,9	7,29
7	NM-37		153	860,37	817	28,69	31,12	40,19	45	2,3	5,62
8	NM-20		114	860,32	866	24,41	24,76	50,83	41	2,1	7,55
9	NM-61		132	838,80	1011				38	1,9	6,35
10	NM-07		81	795,00	795						
11	NM-26		110	792,73	728	27,59	23,92	48,48	60	3,0	7,21
12	NM-72		97	713,49	525						7,36
13	NM-79		60	514,50	412						8,58
14	NM-36	2122,0	49	464,68	359				61	3,1	9,48
15	NM-88		58	461,10	436	34,87	22,37	42,76	35	1,8	7,95
16	NM-45		56	445,20	442				48	2,4	7,95
17	NM-81		55	421,67	384	26,34	26,12	47,54	54	2,7	7,67
18	NM-09		57	383,80	505				13	2,2	6,73
19	NM-35		38	383,29	390				57	2,9	10,09
20	NM-84		49	373,63	418	32,73	24,23	43,04	19	2,4	7,63
21	NM-11		40	299,33	292				11	2,2	7,48
22	NM-65		31	286,60	270				61	3,1	9,25
23	NM-19		40	258,00	234					2,0	6,45
24	NM-27		44	245,30	319				13	1,6	5,58
25	NM-29		31	237,97	219				21	2,1	7,68
26	NM-12		27	216,34	199				22	2,2	8,01
27	NM-44		33	212,00	212				15	2,5	
28	NM-57		24	207,84	220	29,72	23,66	46,62	40	2,7	8,66
29	NM-49		23	198,30	202	26,05	25,68	48,27	55	2,8	8,62
30	NM-24		29	196,56	200	23,46	25,73	50,81	42	2,1	6,78

		•			•						
31	NM-60		20	186,00	169				23	2,6	9,30
32	NM-76		27	180,73	174,8						6,69
33	NM-70		20	172,40	175	27,89	28,02	44,09	56	2,8	8,62
34	NM-10		22	170,00	170						
35	NM-68		24	167,70	176				18	2,3	6,99
36	NM-56			167,00	167				45	2,3	7,92
37	NM-119	750,9	30	156,40	159	41,37	29,46	29,17	52	2,6	5,21
38	NM-69		25	154,52	156	23,13	24,70	52,17	51	2,6	6,18
39	NM-03		13	150,80	116	25,57	23,30	51,14	27	2,5	11,60
40	NM-112		15	146,20	148						9,75
41	NM-71		17	144,50	121				45	2,6	8,50
42	NM-48		19	141,00	141						
43	NM-05	894,3	15	138,00	1845	25,58	25,50	48,92	44	2,8	9,20
44	NM-50		15	129,50	136						8,63
45	NM-14		16	129,00	130				47	2,9	8,06
46	NM-120		12	86,80	88					2,9	7,23
47	NM-97		9	77,10	80					2,3	8,57
48	NM-28		9	74,48	81				13	3,3	8,28
49	NM-15		8	52,00	55				19	2,4	6,50
50	NM-30		5	46,00	46						
51	NM-38		7	45,70	47				13	1,9	6,53
52	NM-121		6	36,40	38					2,5	6,07
53	NM-41		3	28,80	32				8	2,7	9,60
54	NM-23		5	26,50	26					2,4	5,30
55	NM-32		4	26,00	25				9	2,3	6,50
56	NM-18		2	20,40	22					2,0	10,20

Colección Curaray – Tahuayo

CUENCA

POBLACIÓN

Variable

n

Media

D.E.

Var(n-1)

E.E.

CV

Mín

Máx

Cuadro D-1 : Análisis descriptivo Poblacional de la colección Curaray- Tahuayo en Cuatro descriptores morfológicos- Sofware InfoGen

Estadística	descriptiva									
CUENCA	POBLACIÓN	Variable	n	Media	D.E.	Var(n-1)	E.E.	CV	Mín	Máx
CURARAY	CAPIHUARA	ALTURA	12	174.34	20.52	421.1	5.92	11.77	141.67	205
CURARAY	CAPIHUARA	DIAMCOPA	12	115.84	18.34	336.28	5.29	15.83	69	143
CURARAY	CAPIHUARA	DIAMBASAL	12	28.15	5.9	34.76	1.7	20.94	20.71	40.98
CURARAY	CAPIHUARA	NUMRAMBA	12	2.17	0.58	0.33	0.17	26.65	1	3
CURARAY	PUMA	ALTURA	9	191.81	18.96	359.59	6.32	9.89	164.4	221.29
CURARAY	PUMA	DIAMCOPA	9	125.43	8.17	66.7	2.72	6.51	115.6	135.46
CURARAY	PUMA	DIAMBASAL	9	30.96	2.11	4.46	0.7	6.82	28.41	34
CURARAY	PUMA	NUMRAMBA	9	3.11	0.33	0.11	0.11	10.71	3	4
CURARAY	QUEBRCAPIHUA	ALTURA	8	186.79	19.72	389.04	6.97	10.56	159	222.5
CURARAY	QUEBRCAPIHUA	DIAMCOPA	8	133.36	20.84	434.15	7.37	15.62	104.92	162.57
CURARAY	QUEBRCAPIHUA	DIAMBASAL	8	33.42	7.23	52.34	2.56	21.65	26.63	50.32
CURARAY	QUEBRCAPIHUA	NUMRAMBA	8	2.88	0.64	0.41	0.23	22.29	2	4
CURARAY	STAMARIA	ALTURA	9	177.23	13.27	176.03	4.42	7.49	158.57	194.52
CURARAY	STAMARIA	DIAMCOPA	9	118.65	12.9	166.31	4.3	10.87	101.59	137.31
CURARAY	STAMARIA	DIAMBASAL	9	28.49	4.85	23.55	1.62	17.03	19.23	34.49
CURARAY	STAMARIA	NUMRAMBA	9	2.56	0.73	0.53	0.24	28.43	2	4
Estadística	descriptiva		•					•		
	1	1	1	1		1				

TAHUAYO	AFASI	ALTURA	10	198.71	14.81	219.34	4.68	7.45	173.18	218.11
TAHUAYO	AFASI	DIAMCOPA	10	150.04	11.27	127	3.56	7.51	126.8	166.1
TAHUAYO	AFASI	DIAMBASAL	10	33.71	3.66	13.4	1.16	10.86	28.47	40.05
TAHUAYO	AFASI	NUMRAMBA	10	3	0.47	0.22	0.15	15.71	2	4
TAHUAYO	HUIRIRIMA	ALTURA	4	188.07	7.69	59.07	3.84	4.09	179.86	198
TAHUAYO	HUIRIRIMA	DIAMCOPA	4	134.25	5.55	30.81	2.78	4.13	126.33	139.28
TAHUAYO	HUIRIRIMA	DIAMBASAL	4	30.35	3.34	11.17	1.67	11.01	27.31	33.25
TAHUAYO	HUIRIRIMA	NUMRAMBA	4	3	0	0	0	0	3	3
TAHUAYO	USHPA	ALTURA	9	204.67	8.41	70.76	2.8	4.11	183.33	210.92
TAHUAYO	USHPA	DIAMCOPA	9	160.09	12.85	165.05	4.28	8.03	137	178.13
TAHUAYO	USHPA	DIAMBASAL	9	35.56	4.23	17.9	1.41	11.9	31.26	42.55
TAHUAYO	USHPA	NUMRAMBA	9	2.89	0.33	0.11	0.11	11.54	2	3

Colección Tigre – Curaray

Cuadro E-1: Análisis descriptivo Poblacional de la colección Tigre- Curaray en Cuatro descriptores morfológicos- Sofware InfoGen

Estadística descriptiva

Litauistica	descriptiva	1	-	,		,			1	
CUENCA	POBLACIÓN	Variable	n	Media	D.E.	Var(n-1)	E.E.	CV	Mín	Máx
TIGRE	AGUARUNA	ALTURA	6	187.33	7.47	55.85	3.05	3.99	179.4	201.29
TIGRE	AGUARUNA	DIAM.COPA	6	138.44	11.18	125.07	4.57	8.08	125.38	155.09
TIGRE	AGUARUNA	DIAM.BASAL	6	26.53	1.16	1.33	0.47	4.36	25.2	27.92
TIGRE	AGUARUNA	NÚM.RAM.BA	6	2.66	0.47	0.22	0.19	17.58	2.2	3.53
TIGRE	HUARMI TIPISHCA	ALTURA	6	187.15	7.9	62.48	3.23	4.22	178.9	199.35
TIGRE	HUARMI TIPISHCA	DIAM.COPA	6	137.09	9.18	84.31	3.75	6.7	121.85	147.59
TIGRE	HUARMI TIPISHCA	DIAM.BASAL	6	28.19	2.69	7.25	1.1	9.55	24.05	32.11
TIGRE	HUARMI TIPISHCA	NÚM.RAM.BA	6	2.59	0.16	0.03	0.06	6.15	2.37	2.86
TIGRE	LORENZO	ALTURA	2	196.07	9.54	90.99	6.75	4.87	189.32	202.81
TIGRE	LORENZO	DIAM.COPA	2	156.52	19.18	367.75	13.56	12.25	142.96	170.08
TIGRE	LORENZO	DIAM.BASAL	2	27.51	1.65	2.74	1.17	6.01	26.34	28.68
TIGRE	LORENZO	NÚM.RAM.BA	2	2.51	0.1	0.01	0.07	3.94	2.44	2.58
TIGRE	PUMA HUACANA	ALTURA	6	194.51	9.61	92.31	3.92	4.94	181.41	205.77
TIGRE	PUMA HUACANA	DIAM.COPA	6	135.1	10.72	114.99	4.38	7.94	121.68	154
TIGRE	PUMA HUACANA	DIAM.BASAL	6	28.88	2.23	4.99	0.91	7.73	25.96	32.16
TIGRE	PUMA HUACANA	NÚM.RAM.BA	6	2.92	0.22	0.05	0.09	7.64	2.62	3.31

Estadística descriptiva

CUENCA	POBLACIÓN	Variable	n	Media	D.E.	Var(n-1)	E.E.	CV	Mín	Máx
CURARAY	CAPIHUARA	ALTURA	12	191.34	10.98	120.64	3.17	5.74	171.04	205.42
CURARAY	CAPIHUARA	DIAM.COPA	12	132.06	12.17	148.19	3.51	9.22	112.19	155.24
CURARAY	CAPIHUARA	DIAM.BASAL	12	28.31	4.06	16.48	1.17	14.34	22.1	34.19
CURARAY	CAPIHUARA	NÚM.RAM.BA	12	2.51	0.23	0.05	0.07	9.2	2.2	2.92

108 Progenies Precoces

Cuadro F-1. Matriz en Software de selección Genética Selegen REML-BLUP del comparativo de 108 Progenies Precoces

PARCELA	PROGENIE	REPETICION	OBSERPARC	ALTURA	DIAMCOPA	DIAMBASAL	NUMRAMBA
1	1	1	1	215,00	114,67	23,87	2,33
2	1	2	1	195,00	183,33	46,54	3,00
3	1	3	1	188,33	131,00	43,76	2,33
4	1	4	1	200,00	168,33	35,31	3,33
5	2	1	1	226,67	121,33	33,61	3,00
6	2	2	1	193,33	125,33	25,15	1,67

7	2	3	1	225,00	120,00	47,20	2,50
8	2	4	1	236,67	126,67	32,15	2,33
9	3	1	1	276,67	120,00	30,16	1,67
10	3	2	1	285,00	130,00	39,65	4,00
11	3	3	1	186,67	95,00	34,54	2,00
12	3	4	1	176,67	116,67	31,84	2,67
13	4	1	1	206,67	103,33	24,36	1,67
14	4	2	1	205,00	192,00	39,88	2,67
15	4	3	1	172,50	145,00	30,57	2,00
16	4	4	1	167,67	106,67	23,84	3,00
17	5	1	1	287,00	145,00	25,79	1,33
18	5	2	1	201,67	159,67	39,01	2,67
19	5	3	1	205,00	93,50	24,82	1,50
20	5	4	1	203,33	146,00	42,10	3,67
21	6	1	1	216,67	135,00	37,97	3,33
22	6	2	1	184,33	136,00	27,05	3,00
23	6	3	1	163,33	144,67	30,58	4,33
24	6	4	1	151,33	133,67	33,17	4,33
25	7	1	1	183,33	134,00	24,14	2,67
26	7	2	1	172,33	123,33	29,00	2,67
27	7	3	1	201,67	163,33	38,30	3,33
28	7	4	1	176,67	106,67	27,34	1,67
29	8	1	1	188,33	165,00	31,70	4,33
30	8	2	1	171,67	113,33	26,76	2,33
31	8	3	1	201,00	136,67	31,08	3,00
32	8	4	1	181,67	126,67	34,62	2,67
33	9	1	1	208,33	118,33	18,72	1,33
34	9	2	1	150,00	100,00	18,38	1,00
35	9	3	1	190,00	121,67	28,72	2,33
36	9	4	1	175,00	124,33	25,57	2,33
37	10	1	1	211,67	142,67	24,69	2,00
38	10	2	1	218,33	142,67	33,36	2,33
39	10	3	1	236,67	163,33	39,06	2,67
40	10	4	1	233,33	165,00	36,55	2,33
41	11	1	1	180,00	130,00	17,53	1,00
42	11	2	1	177,50	137,50	24,48	3,00
43	11	3	1	210,00	148,33	28,56	2,33
44	11	4	1	177,50	137,50	28,35	2,00
45	12	1	1	205,00	196,00	33,68	3,67
46	12	2	1	192,50	144,00	31,80	1,50
47	12	3	1	223,33	203,33	35,09	1,67
48	12	4	1	203,33	169,00	37,44	3,00
49	13	1	1	185,00	151,00	25,70	1,50
50	13	2	1	190,00	165,00	33,87	3,00
51	13	3	1	155,00	146,00	32,33	2,33
52	13	4	1	200,00	188,33	32,30	2,67
53	14	1	1	179,00	183,50	29,31	1,50
54	14	2	1	156,67	176,67	28,96	1,67

55	14	3	1	191,67	206,67	29,09	1,67
56	14	4	1	161,67	129,00	22,89	2,00
57	15	1	1	215,00	130,67	22,87	1,33
58	15	2	1	165,00	141,67	30,69	2,00
59	15	3	1	153,33	115,00	21,66	1,00
60	15	4	1	225,00	174,00	44,63	3,67
61	16	1	1	228,33	200,00	38,58	1,67
62	16	2	1	198,33	118,33	21,92	1,00
63	16	3	1	163,33	134,33	26,01	2,00
64	16	4	1	188,33	201,00	39,82	2,00
65	17	1	1	170,00	95,00	15,83	1,00
66	17	2	1	158,00	170,00	26,92	3,00
67	17	3	1	183,33	190,00	38,71	2,67
68	17	4	1	166,67	177,33	22,16	1,00
69	18	1	1	133,33	84,33	14,12	1,67
70	18	2	1	160,00	96,33	32,96	2,67
71	18	3	1	143,33	107,67	26,08	3,00
72	18	4	1	170,00	97,67	22,78	1,67
73	19	1	1	220,00	140,67	30,23	1,67
74	19	2	1	208,33	122,67	37,95	2,33
75	19	3	1	258,33	192,67	40,11	4,00
76	19	4	1	163,33	73,33	31,76	2,33
77	20	1	1	157,50	70,50	16,38	2,50
78	20	2	1	110,00	106,50	31,86	2,00
79	20	3	1	182,50	152,50	35,04	4,50
80	20	4	1	162,33	128,33	32,12	3,00
81	21	1	1	181,67	116,67	24,37	2,67
82	21	2	1	211,67	136,67	28,16	2,00
83	21	3	1	193,33	123,33	29,07	2,00
84	21	4	1	251,67	201,00	36,92	3,00
85	22	1	1	189,33	168,67	26,69	2,33
86	22	2	1	182,50	160,00	24,01	2,00
87	22	3	1	203,33	136,67	29,04	2,00
88	22	4	1	164,33	134,00	22,85	2,00
89	23	1	1	190,33	129,67	30,81	3,33
90	23	2	1	215,00	120,00	22,04	1,00
91	23	3	1	198,33	141,67	48,83	5,00
92	23	4	1	212,50	147,50	53,86	4,50
93	24	1	1	217,50	75,00	26,95	2,00
94	24	2	1	200,00	140,00	36,92	2,00
95	24	3	1	173,33	140,00	38,32	2,67
96	24	4	1	185,00	156,67	24,77	1,33
97	25	1	1	177,00	148,33	31,13	4,00
98	25	2	1	233,33	163,33	33,36	2,67
99	25	3	1	193,33	163,33	50,16	4,33
100	25	4	1	174,00	103,67	28,36	3,00
101	26	1	1	178,33	143,33	30,33	2,33
102	26	2	1	255,00	186,67	47,90	3,33

103	26	3	1	193,33	131,00	33,01	2,00
104	26	4	1	194,00	134,33	45,81	3,33
105	27	1	1	220,00	100,00	26,68	2,00
106	27	2	1	205,00	116,67	40,99	3,33
107	27	3	1	206,67	205,00	31,07	2,33
108	27	4	1	151,67	59,67	14,92	1,00
109	28	1	1	233,33	163,33	40,40	3,67
110	28	2	1	184,33	118,00	22,13	1,33
111	28	3	1	196,67	166,67	32,69	1,67
112	28	4	1	200,00	131,00	28,67	2,33
113	29	1	1	221,67	165,00	35,85	3,00
114	29	2	1	216,67	121,67	29,41	2,00
115	29	3	1	232,50	182,00	40,05	3,50
116	29	4	1	210,00	188,33	27,05	2,00
117	30	1	1	190,00	167,33	38,59	3,33
118	30	2	1	175,00	170,00	74,88	6,00
119	30	3	1	166,67	77,33	33,43	1,67
120	30	4	1	193,33	146,67	36,18	3,33
121	31	1	1	235,00	130,00	44,19	4,33
122	31	2	1	158,33	151,67	64,91	4,33
123	31	3	1	828,33	142,67	33,06	2,67
124	31	4	1	141,33	137,00	41,28	3,33
125	32	1	1	225,00	140,00	25,68	1,50
126	32	2	1	226,67	169,00	29,82	1,67
127	32	3	1	175,00	145,00	31,43	3,00
128	32	4	1	188,33	161,67	46,69	4,00
129	33	1	1	217,50	140,00	31,26	3,00
130	33	2	1	193,33	170,00	40,20	3,67
131	33	3	1	189,00	128,50	31,44	3,00
132	33	4	1	178,33	113,33	36,80	2,67
133	34	1	1	233,33	157,67	43,32	3,33
134	34	2	1	171,67	133,33	28,81	3,00
135	34	3	1	176,67	133,00	32,43	2,00
136	34	4	1	163,33	126,00	20,96	1,67
137	35	1	1	175,67	107,33	23,56	2,33
138	35	2	1	158,33	135,00	25,34	2,00
139	35	3	1	181,33	121,67	20,89	1,67
140	35	4	1	146,67	160,00	19,04	2,33
141	36	1	1	166,67	160,67	30,63	4,00
142	36	2	1	198,33	173,00	60,64	6,33
143	36	3	1	200,00	137,50	42,30	4,00
144	36	4	1	181,67	133,67	27,53	4,00
145	37	1	1	188,33	127,67	40,91	3,67
146	37	2	1	208,33	159,33	43,98	2,67
147	37	3	1	172,50	152,50	35,71	2,00
148	37	4	1	186,67	167,67	24,24	1,33
149	38	1	1	225,00	207,50	36,09	3,00
150	38	2	1	208,33	138,33	41,35	3,33

151	38	3	1	235,00	160,00	27,06	1,50
152	38	4	1	220,00	120,00	39,51	2,00
153	39	1	1	101,67	112,00	25,08	1,67
154	39	2	1	237,50	195,00	53,20	2,00
155	39	3	1	235,00	139,00	42,43	3,00
156	39	4	1	256,67	200,00	26,34	2,00
157	40	1	1	181,67	151,00	33,54	1,33
158	40	2	1	190,00	85,00	29,72	3,33
159	40	3	1	216,67	111,67	38,02	3,00
160	40	4	1	201,67	151,67	44,88	3,00
161	41	1	1	220,00	150,00	47,84	3,67
162	41	2	1	267,50	193,50	24,87	1,00
163	41	3	1	270,00	142,50	38,65	3,00
164	41	4	1	161,33	115,33	30,25	3,00
165	42	1	1	188,33	100,33	27,38	2,67
166	42	2	1	230,00	185,33	43,75	4,00
167	42	3	1	186,67	168,33	36,18	2,00
168	42	4	1	200,00	191,67	39,67	2,00
169	43	1	1	208,33	190,00	41,83	3,33
170	43	2	1	210,00	175,00	32,47	1,67
171	43	3	1	136,67	124,33	41,98	3,33
172	43	4	1	140,00	102,67	21,65	1,67
173	44	1	1	167,50	137,50	35,23	1,00
174	44	2	1	176,67	146,00	24,65	2,67
175	44	3	1	121,33	91,33	25,62	2,00
176	44	4	1	195,00	146,67	36,90	3,33
177	45	1	1	158,33	139,33	50,02	4,00
178	45	2	1	208,33	158,33	37,92	2,67
179	45	3	1	211,67	222,33	33,00	3,33
180	45	4	1	192,50	187,50	28,90	2,00
181	46	1	1	225,00	195,00	38,14	3,00
182	46	2	1	200,00	163,00	48,46	4,00
183	46	3	1	186,67	133,33	36,80	2,33
184	46	4	1	210,00	146,67	32,60	2,00
185	47	1	1	223,33	159,33	31,20	2,00
186	47	2	1	125,00	60,00	20,20	1,33
187	47	3	1	221,67	138,33	30,87	2,00
188	47	4	1	220,00	130,00	30,58	3,67
189	48	1	1	198,33	136,00	39,14	2,67
190	48	2	1	200,00	210,00	25,63	2,00
191	48	3	1	186,67	151,67	27,92	2,00
192	48	4	1	187,50	131,00	31,35	2,50
193	49	1	1	190,00	142,67	34,34	2,00
194	49	2	1	200,00	141,67	46,90	4,00
195	49	3	1	173,33	133,33	27,09	2,67
196	49	4	1	160,00	114,00	44,96	3,50
197	50	1	1	197,50	142,50	42,43	3,00
198	50	2	1	240,00	170,00	41,02	2,67

199	50	3	1	225,00	170,00	38,05	3,33
200	50	4	1	183,33	128,33	25,83	2,00
201	51	1	1	198,33	146,67	30,86	1,33
202	51	2	1	191,67	90,00	32,88	3,00
203	51	3	1	137,33	155,00	26,72	2,00
204	51	4	1	184,00	110,00	21,11	1,00
205	52	1	1	236,67	163,33	33,53	1,67
206	52	2	1	231,67	139,33	39,55	4,00
207	52	3	1	180,67	108,33	42,16	4,33
208	52	4	1	228,33	130,33	38,51	2,67
209	53	1	1	155,33	82,67	33,55	3,33
210	53	2	1	198,33	156,00	33,85	3,33
211	53	3	1	187,50	150,00	21,21	2,50
212	53	4	1	168,33	123,33	18,65	1,67
213	54	1	1	205,00	170,00	48,34	3,67
214	54	2	1	154,33	118,33	18,88	2,33
215	54	3	1	196,67	100,00	39,02	2,67
216	54	4	1	166,67	102,33	31,82	2,33
217	55	1	1	189,33	160,00	44,76	3,67
218	55	2	1	202,50	145,00	30,68	2,50
219	55	3	1	113,33	68,33	26,50	3,00
220	55	4	1	221,67	126,00	39,77	3,00
221	56	1	1	195,00	149,33	56,78	5,33
222	56	2	1	177,50	121,00	20,67	1,00
223	56	3	1	136,67	120,00	17,75	1,00
224	56	4	1	178,33	154,00	33,85	2,00
225	57	1	1	151,67	110,33	20,75	2,00
226	57	2	1	200,00	132,50	23,70	1,50
227	57	3	1	113,33	84,00	17,65	2,67
228	57	4	1	202,50	202,50	34,01	3,50
229	58	1	1	227,50	135,00	33,52	2,50
230	58	2	1	130,00	105,00	16,02	1,00
231	58	3	1	137,33	90,33	15,57	1,67
232	58	4	1	200,00	153,67	41,26	3,00
233	59	1	1	225,00	137,67	26,04	2,00
234	59	2	1	178,33	126,67	28,84	2,33
235	59	3	1	198,67	142,33	34,99	2,33
236	59	4	1	178,33	174,67	37,52	3,33
237	60	1	1	175,00	130,00	37,98	2,50
238	60	2	1	201,67	130,00	29,38	2,33
239	60	3	1	225,00	264,00	41,43	5,00
240	60	4	1	246,67	170,00	142,83	2,67
241	61	1	1	216,67	152,67	40,44	3,33
242	61	2	1	208,33	236,67	53,56	4,33
243	61	3	1	220,00	130,00	39,85	2,33
244	61	4	1	186,67	146,00	32,43	3,67
245	62	1	1	232,50	135,00	29,12	2,50
246	62	2	1	216,67	211,67	32,60	1,67

247	62	3	1	153,33	133,67	30,32	2,00
248	62	4	1	283,33	203,33	59,09	4,33
249	63	1	1	246,67	216,00	36,99	3,67
250	63	2	1	226,67	170,00	38,39	2,33
251	63	3	1	153,33	166,00	26,02	2,67
252	63	4	1	195,00	156,67	31,18	1,67
253	64	1	1	225,00	159,33	40,75	3,33
254	64	2	1	235,00	176,67	48,33	3,67
255	64	3	1	160,00	107,67	39,50	3,67
256	64	4	1	245,00	169,67	38,43	3,67
257	65	1	1	226,67	213,33	56,66	3,67
258	65	2	1	225,00	110,00	31,25	1,50
259	65	3	1	110,00	69,50	11,48	2,00
260	65	4	1	190,00	75,00	15,92	1,00
261	66	1	1	258,33	160,00	35,16	2,67
262	66	2	1	676,67	188,33	56,35	3,67
263	66	3	1	191,67	133,33	45,99	3,00
264	66	4	1	200,00	166,00	38,24	3,00
265	67	1	1	201,67	186,67	45,30	2,67
266	67	2	1	190,00	116,00	22,76	1,33
267	67	3	1	260,00	155,00	39,10	2,50
268	67	4	1	237,50	155,00	29,95	1,50
269	68	1	1	222,50	135,00	57,87	3,00
270	68	2	1	173,33	110,00	35,31	3,33
271	68	3	1	151,67	111,67	37,98	4,00
272	68	4	1	200,00	129,67	38,82	2,33
273	69	1	1	251,67	191,67	47,72	3,00
274	69	2	1	191,67	164,00	53,45	5,67
275	69	3	1	170,00	119,33	30,64	3,00
276	69	4	1	141,00	82,67	14,07	2,00
277	70	1	1	190,00	157,67	43,47	3,00
278	70	2	1	173,33	130,33	19,78	1,00
279	70	3	1	142,33	70,00	27,66	3,00
280	70	4	1	235,00	170,00	32,76	2,00
281	71	1	1	240,00	136,50	29,32	3,00
282	71	2	1	198,33	197,67	38,02	1,33
283	71	3	1	251,67	190,00	30,72	1,33
284	71	4	1	175,00	191,67	34,42	2,67
285	72	1	1	258,33	176,67	35,35	2,33
286	72	2	1	306,67	246,67	48,12	3,33
287	72	3	1	222,50	117,50	34,44	2,00
288	72	4	1	221,67	136,67	38,75	3,00
289	73	1	1	215,00	146,33	21,96	2,00
290	73	2	1	150,00	155,00	21,51	2,00
291	73	3	1	183,33	167,67	30,48	2,33
292	73	4	1	172,33	114,67	17,26	2,00
293	74	1	1	251,67	186,67	36,12	2,33
294	74	2	1	200,00	141,67	42,27	2,67

295	74	3	1	193,33	170,00	37,52	4,00
296	74	4	1	191,67	145,00	29,73	2,67
297	75	1	1	285,00	223,00	34,48	3,50
298	75	2	1	183,33	103,33	26,20	2,00
299	75	3	1	196,33	154,33	30,49	2,67
300	75	4	1	175,00	145,00	35,15	4,50
301	76	1	1	230,00	160,00	34,98	2,50
302	76	2	1	191,67	135,00	37,75	2,67
303	76	3	1	156,67	121,67	22,25	1,67
304	76	4	1	225,00	88,00	24,70	2,00
305	77	1	1	235,00	156,00	26,74	2,33
306	77	2	1	178,33	163,33	39,25	3,00
307	77	3	1	160,00	169,00	29,65	4,00
308	77	4	1	195,00	166,67	39,59	2,33
309	78	1	1	202,50	162,50	39,88	2,00
310	78	2	1	225,00	131,67	32,01	2,00
311	78	3	1	162,50	81,50	22,13	2,00
312	78	4	1	226,67	140,00	28,81	1,33
313	79	1	1	227,50	210,00	185,09	3,50
314	79	2	1	187,50	103,00	26,44	2,00
315	79	3	1	225,00	145,00	44,93	3,50
316	79	4	1	186,67	92,67	29,46	2,33
317	80	1	1	203,33	210,00	35,77	2,67
318	80	2	1	227,50	210,00	29,80	2,00
319	80	3	1	206,67	138,33	31,77	1,67
320	80	4	1	222,50	162,50	47,70	3,00
321	81	1	1	160,00	145,00	37,65	2,67
322	81	2	1	216,67	166,67	30,53	3,67
323	81	3	1	221,67	168,67	32,93	2,67
324	81	4	1	228,33	188,33	48,76	4,67
325	82	1	1	216,67	163,33	37,96	3,00
326	82	2	1	152,67	105,67	19,20	2,33
327	82	3	1	171,67	151,67	43,98	4,00
328	82	4	1	206,67	163,33	36,30	3,33
329	83	1	1	225,00	80,00	19,42	1,00
330	83	2	1	115,67	73,33	12,09	1,33
331	83	3	1	191,67	158,67	23,75	2,00
332	83	4	1	201,67	136,67	35,11	3,00
333	84	1	1	218,33	179,33	32,09	1,33
334	84	2	1	180,73	175,00	37,80	3,67
335	84	3	1	233,33	131,67	46,02	3,00
336	84	4	1	166,67	156,67	46,23	3,67
337	85	1	1	225,00	144,33	27,79	2,00
338	85	2	1	230,00	165,00	36,91	2,00
339	85	3	1	200,00	130,00	28,44	2,33
340	85	4	1	170,00	140,00	18,83	1,00
341	86	1	1	210,00	140,00	40,10	3,67
342	86	2	1	173,33	98,33	17,03	2,33

343	86	3	1	125,00	70,00	22,32	3,00
344	86	4	1	191,67	136,67	37,07	2,33
345	87	1	1	288,33	216,67	47,74	3,33
346	87	2	1	225,00	175,00	51,47	3,33
347	87	3	1	208,33	150,00	45,07	3,33
348	87	4	1	260,00	159,00	41,92	2,00
349	88	1	1	236,67	140,67	42,36	3,00
350	88	2	1	203,33	145,33	36,60	3,00
351	88	3	1	170,00	151,00	46,40	3,33
352	88	4	1	155,00	153,67	56,77	5,00
353	89	1	1	221,67	116,00	36,52	2,33
354	89	2	1	175,00	184,00	59,66	5,00
355	89	3	1	213,33	138,00	37,27	2,33
356	89	4	1	226,67	138,33	32,85	2,67
357	90	1	1	231,67	139,33	41,82	2,33
358	90	2	1	198,33	150,00	33,96	2,67
359	90	3	1	196,67	118,33	22,16	1,33
360	90	4	1	203,33	115,67	35,58	3,00
361	91	1	1	230,00	150,00	23,47	0,50
362	91	2	1	162,50	108,00	33,89	3,50
363	91	3	1	182,50	120,00	26,40	1,00
364	91	4	1	225,00	172,67	25,49	3,00
365	92	1	1	163,33	100,00	34,03	2,33
366	92	2	1	154,33	86,67	19,78	2,00
367	92	3	1	125,00	70,00	15,06	1,33
368	92	4	1	180,00	106,33	32,02	2,00
369	93	1	1	185,00	105,00	22,83	2,00
370	93	2	1	195,00	163,00	28,84	2,67
371	93	3	1	208,33	156,67	30,99	2,33
372	93	4	1	231,67	201,67	35,74	3,00
373	94	1	1	225,00	110,00	27,01	2,00
374	94	2	1	225,00	180,00	36,18	3,50
375	94	3	1	300,00	170,00	49,04	4,00
376	94	4	1	185,00	99,67	25,22	1,33
377	95	1	1	218,33	192,67	32,68	2,33
378	95	2	1	236,67	118,33	50,01	2,33
379	95	3	1	171,67	133,33	27,68	1,33
380	95	4	1	202,00	120,00	36,41	2,67
381	96	1	1	175,00	140,00	33,81	1,50
382	96	2	1	168,33	170,00	34,87	3,00
383	96	3	1	154,00	96,67	19,48	1,67
384	96	4	1	159,33	155,00	24,32	4,00
385	97	1	1	197,67	151,67	26,82	2,00
386	97	2	1	198,33	116,00	39,02	2,67
387	97	3	1	212,50	109,00	34,43	2,50
388	97	4	1	140,00	112,50	25,23	2,50
389	98	1	1	240,00	149,33	33,70	3,33
390	98	2	1	135,00	138,00	34,84	3,33

•							
391	98	3	1	172,50	168,00	30,92	3,00
392	98	4	1	208,33	163,33	43,82	4,33
393	99	1	1	275,00	246,67	42,98	3,33
394	99	2	1	190,00	136,50	22,97	3,00
395	99	3	1	188,00	108,00	42,40	3,00
396	99	4	1	238,33	200,00	41,96	3,67
397	100	1	1	215,00	125,67	34,12	2,67
398	100	2	1	233,33	164,33	24,88	1,67
399	100	3	1	221,67	170,00	40,19	3,33
400	100	4	1	165,00	120,00	22,77	1,50
401	101	1	1	225,00	170,50	34,28	4,00
402	101	2	1	200,00	105,00	20,01	1,50
403	101	3	1	212,50	170,00	30,89	2,00
404	101	4	1	200,00	128,00	36,86	2,00
405	102	1	1	270,00	160,00	32,86	2,33
406	102	2	1	273,67	183,33	33,95	1,67
407	102	3	1	177,33	119,00	30,36	2,33
408	102	4	1	210,00	145,33	38,18	2,33
409	103	1	1	260,00	213,67	36,49	2,67
410	103	2	1	156,67	149,33	32,87	3,00
411	103	3	1	171,67	153,33	21,09	2,67
412	103	4	1	202,50	150,00	44,77	4,00
413	104	1	1	195,00	107,67	26,48	1,33
414	104	2	1	210,00	131,67	30,12	2,33
415	104	3	1	166,00	140,00	19,03	2,67
416	104	4	1	206,67	179,33	35,63	2,00
417	105	1	1	172,50	153,50	26,60	1,50
418	105	2	1	196,67	172,67	39,81	3,00
419	105	3	1	188,33	106,67	30,61	2,67
420	105	4	1	192,00	100,67	19,18	1,00
421	106	1	1	195,00	160,00	31,20	2,33
422	106	2	1	137,50	89,00	21,23	3,50
423	106	3	1	153,33	140,00	26,75	2,33
424	106	4	1	156,67	143,33	54,27	4,67
425	107	1	1	180,00	147,50	21,36	2,00
426	107	2	1	185,00	108,33	37,82	2,67
427	107	3	1	225,00	140,00	39,83	2,00
428	107	4	1	183,33	134,67	25,60	1,67
429	108	1	1	220,00	130,00	30,19	3,00
430	108	2	1	187,50	160,00	34,01	3,00
431	108	3	1	191,67	93,00	27,84	2,00
432	108	4	1	183,33	129,33	26,77	2,00

Anexo: 3 Colección de las cuencas Mazan - Napo

CUENCA	POBLACIÓN	COORD	ENADAS	CODIGO	N° FRUTOS	PESO PROMEDIO FRUTO	PORCENTAJE CÁSCARA	PORCENTAJE SEMILLA	PORCENTAJE PULPA	NÚMERO DE SEMILLAS	# SEMILLA/FRU TO
				MT-01	37	8.61	25.87	16.36	57.77	21	1.24
				MT-02	27	6.68	28.46	22.68	48.86	28	1.40
				MT-03	29	9.78	27.03	20.26	52.72	25	1.25
				MT-04	23	8.71	26.47	30.23	43.30	47	2.35
		02811126.0	07202545.7	MT-05	18	6.84	30.25	23.13	46.62	33	1.65
	TIGRE	03°11'26.9	073°2545.7	MT-06	20	7.67	31.14	29.17	39.69	31	1.72
				MT-07	31	7.33	31.71	26.37	41.92	26	1.30
				MT-08	91	9.85	27.65	26.69	45.66	28	1.40
				MT-09	44	10.54	31.44	21.88	46.68	43	2.15
				MT-10	20	10.43	29.89	31.99	38.12	39	2.29
				MT-11	32	10.22	30.09	20.40	49.51	26	1.30
MAZAN	MAZAN			MY-01	58	11.02	27.72	27.38	44.90	47	2.35
				MY-02	64	9.37	28.54	27.07	44.40	47	2.35
				MY-03	38	8.06	30.43	22.28	47.28	27	1.35
				MY-04	33	10.29	26.46	19.42	54.11	33	1.74
		03°17'06.7		MY-05	60	10.96	25.16	23.42	51.43	38	1.90
	YACATE		073°20'42. 6"	MY-06	17	8.05	27.74	19.00	53.27	27	1.42
	TACATE			MY-07	41	9.03	30.15	18.50	51.34	28	1.40
				MY-08	19	8.96	29.17	21.31	49.52	25	1.32
				MY-09	34	10.52	27.49	21.21	51.30	44	2.20
				MY-10	19	9.46	26.25	26.31	47.44	34	1.89
				MY-11	12	8.31	27.54	25.85	46.61	20	1.67
				MY-12	23	8.58	23.66	23.38	52.96	35	1.75
				NY-11	13	7.90	32.89	33.77	33.33	33	2.54
				NY-12	28	7.72	30.99	29.23	39.79	55	2.75
		02022126.2	073°58'23.	NY-13	15	7.17	32.15	29.42	38.42	30	2.14
NAPO	YURACYACU	03°23'26.2	0/3 58 23.	NY-14	10	7.70	27.41	25.00	47.59	21	2.33
				NY-15	28	5.87	36.99	27.10	35.91	40	2.00
				NY-17	36	7.53	26.56	20.11	53.33	36	1.80
				NY-20	33	6.22	31.02	20.99	47.99	32	1.60

Anexo 4: Colección - Cuenca del Yaraví

		CUAD	RO 1. Mate	rial Coled	tado - Cu	uenca del Yavari
	POBLACIÓN O				N°	
CUENCA	COCHA	COORDE	NADAS	CODIGO	FRUTOS	OBSERVACIONES
				YS-01	6	
				YS-02	12	
				YS-03	2	Fruto grande, hoja pequeña y manuda
	SACAMBU			YS-04	4	
	SACAMBO			YS-05	38	
				YS-06	6	
				YS-07	11	
				YS-08	13	Porte alto, fruto grande.
						Fruto grande, peso promedio 12 g, hojas verde-
				YL-01	4	limón y delgadas
				YL-02	16	Fruto pequeño, hojas verde-limón y delgadas
	LETIMANA			YL-03	4	Fruto mediano, hojas verde-limón y delgadas
				YL-04	10	Fruto grande a mediano, hojas verde-limón y delgadas
				112-04	10	Fruto pequeño, planta porte alto, hojas verde-
				YL-05	6	limón y delgadas
				YSB-01	14	Fruto mediano
				YSB-02	6	Fruto mediano a grade, arquitectura coposa
				YSB-03	19	Fruto pequeño
	SACAMBUSINHO			YSB-04	36	Fruto pequeño, menudo, planta vieja
	SACAIVIBUSIINHU			YSB-05	138	Fruto pequeño
				YSB-06	84	Fruto mediano a grande
				YSB-07	39	Fruto mediano a grande
				YSB-08	81	Fruto mediano
	TUCANO 04°16'44.3" 70°0			YT-01	8	Fruta mediana
YAVARI	YACARE			YY-02	5	Porte alto, arquitectura coposa